PENERAPAN ADABOOST UNTUK KLASIFIKASI SUPPORT VECTOR MACHINE GUNA MENINGKATKAN AKURASI PADA DIAGNOSA CHRONIC KIDNEY DISEASE

Eka Listiana, Much Aziz Muslim

Sari


Abstrak

Database masa kini berkembang dengan sangat pesat khususnya dalam bidang kesehatan. Data tersebut apabila tidak diolah dengan baik maka akan menjadi sebuah tumpukan data yang tidak bermanfaat, sehingga perlu adanya proses untuk mengolah data tersebut menjadi sebuah informasi yang bermanfaat. Proses tersebut biasa disebut dengan data mining yang merupakan suatu bidang ilmu penelitian yang mampu mengolah database menjadi pengetahuan yang dapat dimanfaatkan khusunya dalam penelitian ini akan digunakan untuk mendiagnosa penyakit, diantaranya chronic kidney disease. Salah satu metode data mining yang digunakan untuk memprediksi sebuah keputusan dalam suatu hal adalah klasifikasi, di mana dalam metode klasifikasi ada algoritma support vector machine yang bisa digunakan untuk mendiagnosa chronic kidney disease. Dalam penelitian ini untuk meningkatkan akurasi algoritma support vector machine dalam mendiagnosa chronic kidney disease menggunakan adaptive boosting (adaboost) sebagai ensemble learning dengan pemilihan kernel, nilai parameter C, dan iterasi yang sesuai. Dari hasil percobaan, menerapkan adaboost, dengan kernel linier dan pemilihan nilai parameter C pada algoritma support vector machine dalam mendiagnosa chronic kidney disease menunjukkan bahwa tingkat akurasi mempunyai peningkatan sebesar 37% dengan pemaparan hasil seperti berikut, 62,5% (SVM); 97,75% (SVM+linier kernel); 99,5% (SVM+linier kernel +adaboost).

 

Kata Kunci: adaboost, data mining, SVM, Adaptive boosting, chronic kidney disease


Teks Lengkap:

PDF

Refbacks

  • Saat ini tidak ada refbacks.