Studi pengaruh debit dan jumlah tingkat runner terhadap efisiensi turbin vorteks PLTPH

Haryadi Haryadi
Ali Mahmudi
Sugianto Sugianto
Dibyo Setiawan

Abstract


Data from the Central Statistics Agency for West Java Province in the 2023 figures show that the installed electric power in 2022 is 30,196.9 MVA. Based on data from the Indonesia Energy Transition Outlook 2023, West Java Province is in the lowest classification with a percentage of 7-23%. An increase in the number of pico-hydro power plants with a low-head operating system can increase the distribution of electricity supply. Budget allocations for research are available at Polban for internal lecturers, through this scheme, the research team plans to increase the power and efficiency of vortex turbines, the 2023 research output target, an efficiency of >30% from the previous research achievement in the 2022 study of 23.8%. Current studies are carried out with variations in discharge and the number of runner stages to increase the efficiency of vortex turbines. The experimental operation is based on SNI 8277:2016, variations in discharge from 7 to 10 l/s, and the application of one and two stage 630 turbine runners. In addition to variations in discharge, loading gradually until the runner rotation stops. The results of the experimental recording of the application of the one-level 630 runner, obtained the highest efficiency occurring at a discharge of 9 l/s with an efficiency of 37%, while the experimental application of the two-level runner 630 highest efficiency occurred at the application of a discharge of 8 l/s with an efficiency of 34%. The more the discharge is added the response efficiency does not always increase.

Keywords


Discharge; Runner, Vortex; Picohydro; Efficiency.

Teks Lengkap:

PDF

Referensi


B. P. J. Barat, “Provinsi Jawa Barat Dalam Angka 2023,” Bandung, 2023. [Online]. Available: https://jabar.bps.go.id/publication/2023/02/28/57231a828abbfdd50a21fe31/provinsi-jawa-barat-dalam-angka-2023.html [2] E. D. Darmawan, “4.000 Rumah di Majalengka Belum Teraliri Listrik Mandiri,” detikJabar, 2023. https://www.detik.com/jabar/berita/d-6733747/4000-rumah-di-majalengka-belum-teraliri-listrik-mandiri (accessed Aug. 01, 2023). [3] Badan Standardisasi Nasional, Klasifikasi Pembangkit Listrik Tenaga Air. Indonesia, 2019, p. 11. [Online]. Available: http://sispk.bsn.go.id/SNI/DetailSNI/12551 [4] IESR, “Indonesia Energy Transition Outlook 2023: Tracking Progress of Energy Transition in Indonesia: Pursuing Energy Security in the Time of Transition,” p. Please cite this report as: IESR (2022). Indonesia, 2023, [Online]. Available: www.irena.org [5] B. H. B. R. Nasional, “PLT Piko Hidro Tingkatkan Ketersediaan Energi Listrik untuk Daerah Tertinggal,” Bandung-Humas Badan Riset Nasional, 2023. https://www.brin.go.id/news/111325/plt-piko-hidro-tingkatkan-ketersediaan-energi-listrik-untuk-daerah-tertinggal [6] B. S. N. Indonesia, Spesifikasi teknis pembangkit listrik tenaga pikohidro, vol. 1, no. November. Indonesia: Badan Standardisasi Nasional, 2018, p. 15. [Online]. Available: https://drive.esdm.go.id/wl/?id=rdJ65Pu3Tl1p3e4B0sJJPrImMwcYp2P5 [7] Politeknik Negeri Bandung, Rencana Induk Penelitian Politeknik Negeri Bandung 2021-2025. Indonesia, 2021, p. 63. [Online]. Available: https://sippm.polban.ac.id/file_downloads/Rencana_Induk_Penelitian_(RIP)_Polban_Tahun_2021_-_2025_29c33305-5944-4829-b5a8-20b7ccd3520c.pdf [8] Haryadi, A. M. Subarjah, and Sugianto, “Experimental study on 3D vortex gravitational turbine runner,” AIP Conf. Proc., vol. 2296, no. January 2021, 2020, doi: 10.1063/5.0030545. [9] S. Dhakal et al., “Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant,” Renew. Sustain. Energy Rev., vol. 48, pp. 662–669, 2015, doi: 10.1016/j.rser.2015.04.030. [10] T. R. Bajracharya et al., “Effects of Geometrical Parameters in Gravitational Water Vortex Turbines with Conical Basin,” J. Renew. Energy, vol. 2020, no. Figure 1, pp. 1–16, 2020, doi: 10.1155/2020/5373784. [11] N. Maika, W. Lin, and M. Khatamifar, “A Review of Gravitational Water Vortex Hydro Turbine Systems for Hydropower Generation,” Energies, vol. 16, no. 14, 2023, doi: 10.3390/en16145394. [12] M.-S. Kim, D. S. Edirisinghe, H.-S. Yang, S. D. G. S. P. Gunawardane, and Y.-H. Lee, “Effects of blade number and draft tube in gravitational water vortex power plant determined using computational fluid dynamics simulations,” J. Adv. Mar. Eng. Technol., vol. 45, no. 5, pp. 252–262, 2021, doi: 10.5916/jamet.2021.45.5.252. [13] A. Faraji, Y. A. C. Jande, and T. Kivevele, “Performance analysis of a runner for gravitational water vortex power plant,” Energy Sci. Eng., vol. 10, no. 4, pp. 1055–1066, 2022, doi: 10.1002/ese3.1085. [14] Warjito, A. A. Ramadhan, Budiarso, R. Irwansyah, and M. A. F. Kurnianto, “Performance Comparison of Straight, Curved, and Tilted Blades of Pico Scaled Vortex Turbine,” CFD Lett., vol. 15, no. 2, pp. 114–125, 2023, doi: 10.37934/cfdl.15.2.114125. [15] B. S. Nasional, Panduan komisioning pembangkit listrik tenaga mikro hidro (PLTMH) kapasitas hingga 100 kW. Indonesia: www.bsn.go.id, 2015. [Online]. Available: www.bsn.go.id




DOI: https://doi.org/10.24176/crankshaft.v6i2.10876

Article Metrics

Abstract views : 95| PDF views : 32

Refbacks

  • Saat ini tidak ada refbacks.


View My Stats

Indexed by:

gs      JournalStories Main logo

Flag Counter

Jurnal Crankshaft is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Dedicated to: