Analisis Finite Element pada Prostesis Lari: Studi Modifikasi Material dan Desain
Sari
Penelitian ini bertujuan untuk mengevaluasi dan memodifikasi desain prostesis lari yang berasal dari paten Eropa, yang awalnya menggunakan serat karbon sebagai bahan utama. Modifikasi yang dilakukan meliputi penggantian serat karbon dengan komposit polimer fiberglass dan penambahan ketebalan prostesis sebesar 2,5 mm agar dapat menahan beban dinamis setara dengan 8 kali berat pelari, atau sekitar 5096 N, saat berlari. Evaluasi dilakukan menggunakan Analisis Elemen Hingga (Finite Element Analysis/FEA), dengan fokus pada stres, regangan, dan deformasi total di bawah kondisi beban tersebut. Hasil analisis menunjukkan bahwa stres maksimum yang tercatat adalah 850 MPa, yang masih berada di bawah kekuatan tarik maksimum komposit polimer fiberglass, yaitu 1,2 GPa. Regangan maksimum yang tercatat adalah 0,025, dan deformasi total mencapai 51,878 mm, keduanya masih dalam batas yang dapat diterima untuk fungsi prostesis. Material ini terbukti menjadi alternatif yang lebih ekonomis dibandingkan serat karbon, dengan kinerja yang memuaskan untuk prostesis lari. Namun, disarankan untuk melakukan validasi eksperimental lebih lanjut dan uji lapangan guna memastikan daya tahan dan kenyamanan jangka panjang.
Teks Lengkap:
PDFReferensi
H. Tryggvason, F. Starker, A. L. Armannsdottir, C. Lecomte, and F. Jonsdottir, “Speed Adaptable Prosthetic Foot: Concept Description, Prototyping and Initial User Testing,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 12, pp. 2978–2986, Dec. 2020, doi: 10.1109/TNSRE.2020.3036329. [2] N. T. T. Nguyen, O. Kiyotaka, O. Kazuya, F. Toru, and ..., “Effect of Submicron Glass Fiber Modification on Mechanical Properties of Short Carbon Fiber Reinforced Polymer Composite with Different Fiber Length,” Journal of Composites …, 2020, [Online]. Available: https://www.mdpi.com/2504-477X/4/1/5 [3] A. Al Rashid, H. Ikram, and M. Koç, “Additive manufacturing and mechanical performance of carbon fiber reinforced Polyamide-6 composites,” Mater Today Proc, vol. 62, no. P12, pp. 6359–6363, Jan. 2022, doi: 10.1016/j.matpr.2022.03.339. [4] K. Rodsin, A. Ejaz, Q. Hussain, and R. Parichatprecha, “… -Cost Glass-Fiber-Reinforced-Polymer-Composite-Strengthened Reinforced Concrete Beams: A Comparison with Carbon/Sisal Fiber-Reinforced Polymers,” Polymers (Basel), 2023, [Online]. Available: https://www.mdpi.com/2073-4360/15/19/4027 [5] D. Rajesh, P. Anand, V. Balaji, D. S. Prakash, and ..., “Mechanical characterization of glass fiber and glass fiber reinforced with aluminium particulated polymer composite,” Materials Today …, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785321072072 [6] M. Ismail, M. R. M. Rejab, J. P. Siregar, Z. Mohamad, and ..., “Mechanical properties of hybrid glass fiber/rice husk reinforced polymer composite,” Materials Today …, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785320324421 [7] J. A. Ortega, L. A. Healey, W. Swinnen, and W. Hoogkamer, “Energetics and Biomechanics of Running Footwear with Increased Longitudinal Bending Stiffness: A Narrative Review,” Sports Medicine, vol. 51, no. 5, pp. 873–894, May 2021, doi: 10.1007/S40279-020-01406-5. [8] R. Ismail, D. F. Fitriyana, M. A. Habibi, Sugiyanto, and A. P. Bayuseno, “Computational Analysis of Running Prosthesis Design Using Finite Element Method,” 7th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2020 - Proceedings, pp. 288–293, Sep. 2020, doi: 10.1109/ICITACEE50144.2020.9239136. [9] S. Mo et al., “The biomechanical difference between running with traditional and 3D printed orthoses,” J Sports Sci, vol. 37, no. 19, pp. 2191–2197, 2019, doi: 10.1080/02640414.2019.1626069. [10] D. Bonacini, “EUROPEAN PATENT SPECIFICATION,” https://data.epo.org/publication-server/rest/v1.0/publication-dates/20110928/patents/EP2065018NWB1/document.html. [11] S. Kumar, K. Deka, and R. Kumar, “Comparison between Experimental Value and Finite Element Analysis value of Glass Fiber Reinforced Polymer Composite,” Young, 2022, [Online]. Available: https://www.academia.edu/download/89315032/IRJET_V9I3231.pdf [12] P. S. Hatti, P. Harisha, A. B. Somanakatti, and ..., “Study on flexural behavior of glass-fiber reinforced polymer matrix composite,” Materials Today …, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785321056388 [13] S. L. S. Chauhan and S. C. Bhaduri, “Structural analysis of a four-bar linkage mechanism of prosthetic knee joint using finite element method,” Evergreen, vol. 7, no. 2, pp. 209–215, Jun. 2020, doi: 10.5109/4055220. [14] M. A. Khan, A. V Anand, L. Bhanuprakash, and ..., “Mechanical Properties of E-Glass Fiber-Basalt Fiber Reinforced Polymer Matrix Composite,” International Journal of …, 2020, [Online]. Available: https://www.academia.edu/download/103667943/E4903018520.pdf [15] G. C. Papanicolaou, D. V Portan, and L. C. Kontaxis, “Interrelation between fiber–matrix interphasial phenomena and flexural stress relaxation behavior of a glass fiber–polymer composite,” Polymers (Basel), 2021, [Online]. Available: https://www.mdpi.com/2073-4360/13/6/978
DOI: https://doi.org/10.24176/cra.v7i4.13941
Refbacks
- Saat ini tidak ada refbacks.
##submission.license.cc.by-nc-sa4.footer##
Indexed by:
Jurnal Crankshaft is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Dedicated to: