Kaji Eksperimen Pengaruh Jumlah Blade Impeller dan Laju Aliran Massa Fluida terhadap Kavitasi Pompa Sentrifugal Mesin TCU Casting
Sari
Kavitasi menjadi masalah utama pada pompa sentrifugal karena mempengaruhi kinerja dan efisiensinya. Studi eksperimental pengaruh jumlah blade impeller dan laju aliran massa fluida terhadap kavitasi pada pompa sentrifugal diselidiki dan dikarakterisasi untuk mengetahui fenomena dan karakteristik kavitasi. Pompa sentrifugal Merk Ebara tipe 65x50 FSS4JA yang terpasang pada instalasi TCU Mesin Casting dengan jumlah blade 4 pcs dan 6 pcs dengan sudut kemiringan konstan 60º digunakan sebagai objek penelitian. Variasi laju aliran massa fluida ditentukan dengan nilai 1,67 kg/s, 3,33 kg/s, 5,67 kg/s, dan 5,67 kg/s. 7,33kg/s. Hasil penelitian menunjukkan nilai kavitasi tertinggi diperoleh pada pompa sentrifugal dengan variasi jumlah blade 4 pcs dengan nilai NPSH 2,02 pada variasi laju aliran massa fluida sebesar 5,67 kg/s, sedangkan yang terendah terjadi pada pompa sentrifugal dengan variasi jumlah blade 6 pcs dengan nilai NPSH 1,88. Pada variasi laju aliran massa fluida sebesar 7,33 kg/s. Pompa sentrifugal dengan jumlah blade 6 pcs yang bekerja pada laju aliran massa fluida sebesar 7,33 kg/s menjadi hasil optimum dalam riset ini dan memungkinkan dapat diterapkan secara praktis di lapangan.
Kata kunci: Impeller, Kavitasi, Pompa, Sentrifugal.
Teks Lengkap:
PDFReferensi
DAFTAR PUSTAKA [1]. Muhamad. S, Rouf M. Nur B. J. Analisa Kerusakan Pompa Oli Temperature Control Unit Pada Mesin Longitudinal Strecher Ditinjau Dari Kerugian Biaya Produksi di PT. POLIDAYAGUNA PERKASA UNGARAN. STORAGE – Jurnal Ilmiah Teknik dan Ilmu Komputer. Vol. 3, No. 1, PP. 106-115. 2024. https://doi.org/10.55123/storage.v3i1.3173. [2]. Wang. Y, Shao. J, Yang. F, Zhu. Q, Zuo. M. Optimization Design of Centrifugal Pump Cavitation Performance Based on The Improved BP Neural Network Algorithm. Measurement. Vol. 245, No. 1, PP. 1-15. 2025. https://doi.org/10.1016/j.measurement.2024.116553. [3]. Yang. S, Liu. Y, Shao. C, Zhou. J. Study on the Characteristics of Internal and External Sound Fields in Centrifugal Pumps under Cavitation Induced Monopole and Dipole Sound Sources. Applied Acoustics. Vol. 231, No. 1, PP. 1-13. 2025. https://doi.org/10.1016/j.apacoust.2024.110499. [4]. Al-Obaidi. A. R, Shaban A. S. Experimental and Numerical the Effect of Cavitation Detection on Hydraulic Performance of the Centrifugal Pump Based on Different Geometrical Configurations. Journal of Engineering Research. Vol. 230, No. 2, PP. 1-21. 2025. https://doi.org/10.1016/j.jer.2024.11.006. [5]. Lu. Y, Tan. L, Zhao. X, Ma. C. Experiment on Cavitation-Vibration Correlation of a Centrifugal Pump under Steady State and Start-Up Conditions in Energy Storage Station. Journal of Energy Storage. Vol. 83, No. 4, PP. 1-14. 2024. https://doi.org/10.1016/j.est.2024.110763. [6]. Liu. Q, Qi. X, Zhu. Z, Gao. Y, Yang. G, Li. C, Sun. L. Investigation of Cavitation Characteristics in an Aircraft Centrifugal Fuel Pump. Flow Measurement and Instrumentation. Vol. 96, No. 3, PP. 1-16. 2024. https://doi.org/10.1016/j.flowmeasinst.2024.102521. [7]. Dehghan. A. A, Shojaeefard. M. H, Roshanaei. M, (2024). Exploring a New Criterion to Determine the Onset of Cavitation in Centrifugal Pumps from Energy-Saving Standpoint; Experimental and Numerical Investigation. Energy. Vol. 293, No. 3, PP. 1-16. 2024. https://doi.org/10.1016/j.energy.2024.130681. [8]. Song. P, Wei. Z, Zhen. H, Liu. M, Ren. J. Effects of Pre-Whirl and Blade Profile on the Hydraulic and Cavitation Performance of a Centrifugal Pump. International Journal of Multiphase Flow. Vol. 157, No. 4, PP. 1-14. 2022. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104261. [9]. Cucit. V, Burlon. F, Fenu. G, Furlanetto. R, Pellegrino. F. A, Simonato. M. A Control System for Preventing Cavitation of Centrifugal Pumps. Energy Procedia. Vol. 148, No. 2, PP. 242-249. 2022. https://doi.org/10.1016/j.egypro.2018.08.074. [10]. Wanga. X, Wanga. Y, Liua. H, Yadong X, Jiang L, Li. M. A Numerical Investigation on Energy Characteristics of Centrifugal Pump for Cavitation Flow Using Entropy Production Theory. International Journal of Heat and Mass Transfer. Vol. 201, No. 2, PP. 1-13. 2023. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123591. [11]. Kang. W, Zhou. L, Wang. Z. Analysis of Flow Characteristics and Cavitation in The Vanes of a Reversible Pump-Turbine in Pump Mode. Journal of Energy Storage. Vol. 68, No. 2, PP. 1-13. 2023. https://doi.org/10.1016/j.est.2023.107690. [12]. Ramirez. R, Avila. E, Lopez. L, Bula. A, Forero. J. D. CFD Characterization and Optimization of the Cavitation Phenomenon in Dredging Centrifugal Pumps. Alexandria Engineering Journal. Vol. 59, No. 2, PP. 291-309. 2020. https://doi.org/10.1016/j.aej.2019.12.041. [13]. Zhao. G, Liang. N, Li. Q, Cao. L, Wu. D. Effect Mechanisms of Leading-Edge Tubercle on Blade Cavitation Control in a Waterjet Pump. Ocean Engineering. Vol. 59, No. 2, PP. 291-309. 2023. https://doi.org/10.1016/j.oceaneng.2023.116240. [14]. Gong. B, Zhang. Z, Feng. C, Yin. J, Li. N, Wang. D. Experimental Investigation of Characteristics of Tip Leakage Vortex Cavitation-Induced Vibration of a Pump. Annals of Nuclear Energy. Vol. 192, No. 2, PP. 1-12. 2023. https://doi.org/10.1016/j.anucene.2023.109935. [15]. Wang. D, Wei-dong. W, Jia-jun. H, Wei-guo. H, H. Lai. Experimental Study of Cavitation Noise Characteristics in a Centrifugal Pump Based on Power Spectral Density and Wavelet Transform. Flow Measurement and Instrumentation. Vol. 94, No. 2, PP. 1-16. 2023. https://doi.org/10.1016/j.flowmeasinst.2023.102481.
DOI: https://doi.org/10.24176/cra.v8i2.14572
Refbacks
- Saat ini tidak ada refbacks.
##submission.license.cc.by-nc-sa4.footer##
Indexed by:
Jurnal Crankshaft is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Dedicated to: