LITERATURE REVIEW: IOT-BASED GEOGRAPHIC INFORMATION SYSTEM FOR MONITORING SOIL CHEMICAL PROPERTIES IN OIL PALM PLANTATIONS

Banyuriatiga Banyuriatiga, Kartika Sari, Syaddam Syaddam, Arief Rahman, Adlian Adlian

Sari


Oil palm has a crucial role in the National economy, where its productivity depends on the soil chemical properties of the soil. In practice, monitoring methods carried out using conventional methods can be time-consuming and expensive. Therefore, a more efficient approach is needed. By reviewing previous research, this study highlights the latest developments, challenges, opportunities, and future directions in utilising the Internet of Things and Geographic Information Systems for monitoring soil chemical properties in oil palm plantations, thereby supporting more productive and sustainable management. The descriptive method was applied in this literature review research to 26 relevant articles selected from various publication databases, covering the time frame from 2020 to 2024. This study examines the development of IoT sensors for monitoring soil parameters, including humidity, pH, and temperature, in real-time, as well as the application of GIS for spatial analysis and data visualization. The results highlight the significant potential of integrating IoT and GIS to provide efficient real-time data and spatial analysis, thereby supporting more precise land management and informed decision-making, particularly concerning soil fertility and fertilizer use.


Kata Kunci


GIS; IoT; Oil Palm; Soil Chemical Properties

Teks Lengkap:

PDF

Referensi


Alhaji, A. M., Almeida, E. S., Carneiro, C. R., da Silva, C. A. S., Monteiro, S., & Coimbra, J. S. dos R. (2024). Palm Oil (Elaeis guineensis): A Journey through Sustainability, Processing, and Utilization. Foods, 13(17), 2814. https://doi.org/10.3390/foods13172814

Anto, S., & Arie Atwa Magriyanti. (2022). Perancangan Sistem Monitoring Kualitas Tanah Sawah Dengan Parameter Suhu Dan Kelembaban Tanah Menggunakan Arduino Berbasis Internet Of Things (Iot). Elkom : Jurnal Elektronika Dan Komputer, 15(2), 234–241. https://doi.org/10.51903/elkom.v15i2.896

Arumugam, T., Kinattinkara, S., Nambron, D., Velusamy, S., Shanmugamoorthy, M., Pradeep, T., & Mageshkumar, P. (2022). An integration of soil characteristics by using GIS based Geostatistics and multivariate statistics analysis Sultan Batheri block, Wayanad District, India. Urban Climate, 46, 101339.

https://doi.org/10.1016/j.uclim.2022.101339

Baihaki, A., Zuraida, Z., & Ilyas, I. (2020). Perbandingan Sifat Kimia pada Tanah Hutan dan Kebun Kelapa Sawit (Elaies guineensis jacq) di Kecamatan Beutong Kabupaten Nagan Raya. Jurnal Ilmiah Mahasiswa Pertanian, 4(2), 434–445. https://doi.org/10.17969/jimfp.v4i2.11007

Barus, A. B., & Ernah, E. (2024). Peranan Perkebunan Kelapa Sawit Rakyat dalam Mencapai Tujuan Ekonomi Sustainable Development Goals (SDGs) di Indonesia. Mimbar Agribisnis : Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis, 10(1), 316. https://doi.org/10.25157/ma.v10i1.11720

Bilotta, G., Genovese, E., Citroni, R., Cotroneo, F., Meduri, G. M., & Barrile, V. (2023). Integration of an Innovative Atmospheric Forecasting Simulator and Remote Sensing Data into a Geographical Information System in the Frame of Agriculture 4.0 Concept. AgriEngineering, 5(3), 1280–1301. https://doi.org/10.3390/agriengineering5030081

Bobomurodov, S., Abdurakmonov, N., Niyazmetov, U., Baxodirov, Z., Normatov, Y., & Abdurakhmonov, Z. (2023). Mapping of soil properties using geographic information systems (on the example of Tashkent region). E3S Web of Conferences, 386, 04006. https://doi.org/10.1051/e3sconf/202338604006

Budiharto, W., Irwansyah, E., Suroso, J. S., Chowanda, A., Ngarianto, H., & Gunawan, A. A. S. (2021). Mapping and 3D modelling using quadrotor drone and GIS software. Journal of Big Data, 8(1), 48. https://doi.org/10.1186/s40537-021-00436-8

Choudhary, M., Sartandel, R., Arun, A., & Ladge, L. (2022). Crop Recommendation System and Plant Disease Classification using Machine Learning for Precision Agriculture. In Artificial Intelligence and Communication Technologies (pp. 39–49). Soft Computing Research Society. https://doi.org/10.52458/978-81-955020-5-9-4

Farrasati, R., Pradiko, I., Rahutomo, S., Sutarta, E. S., Santoso, H., & Hidayat, F. (2020). C-organik Tanah di Perkebunan Kelapa Sawit Sumatera Utara: Status dan Hubungan dengan Beberapa Sifat Kimia Tanah. Jurnal Tanah Dan Iklim, 43(2), 157. https://doi.org/10.21082/jti.v43n2.2019.157-165

Ginting, E. N. (2020). PENTINGNYA BAHAN ORGANIK UNTUK MENINGKATKAN EFISIENSI DAN EFEKTIVITAS PEMUPUKAN DI PERKEBUNAN KELAPA SAWIT. WARTA Pusat Penelitian Kelapa Sawit, 25(3), 139–154. https://doi.org/10.22302/iopri.war.warta.v25i3.38

Haj-Amor, Z., & Bouri, S. (2020). Use of HYDRUS-1D–GIS tool for evaluating effects of climate changes on soil salinization and irrigation management. Archives of Agronomy and Soil Science, 66(2), 193–207. https://doi.org/10.1080/03650340.2019.1608438

Hamdani, D., Pratikso, P., & Firmana A, Y. (2024). Kajian Pustaka Pemanfaatan Sistem Informasi Geografis untuk Pengolahan dan Penyajian Data Geoteknik. Ranah Research : Journal of Multidisciplinary Research and Development, 6(6), 2813–2823. https://doi.org/10.38035/rrj.v6i6.1156

Hegde, R., Srinivasan, R., Seema, K. V, Srinivas, S., Niranjana, K. V, & Dhanorkar, B. A. (2022). Assessment of Spatial Distribution of Major soil Nutrients in Bhagyanagar Subwatershed, Koppal District, Karnataka using GIS Techniques. Geographical Analysis, 11(2), 11–15. https://doi.org/10.53989/bu.ga.v11i2.22.1

Hendro Yuwono, A., Suryani Faradisa, I., & Cahyo M Putra, R. (2024). SMART FARMING DENGAN PEMBANGKIT HYBRID BERBASIS IOT SEBAGAI KONTROL DAN MONITORING DI AREA PERTANIAN. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 16–23. https://doi.org/10.36040/jati.v8i1.8960

Husdi, H. (2018). MONITORING KELEMBABAN TANAH PERTANIAN MENGGUNAKAN SOIL MOISTURE SENSOR FC-28 DAN ARDUINO UNO. ILKOM Jurnal Ilmiah, 10(2), 237–243. https://doi.org/10.33096/ilkom.v10i2.315.237-243

Izza, S., Azhar, G. Al, Kusumawardhani, A., & Irawan, N. D. (2023). Optimalisasi Pertumbuhan Tanaman Sawo melalui Pemantauan Kelembapan Tanah berbasis IoT dengan Pengendali Fuzzy Logic. Jurnal Elektronika Dan Otomasi Industri, 10(3), 426–433. https://doi.org/10.33795/elkolind.v10i3.4420

Jenath, M., Sinnur, R., Bhogavelli, V. K., & Jagadish, B. (2024). Terrestrial Moisture Sensor using IoT and Neutralizing pH Value of the Soil. 2024 10th International Conference on Communication and Signal Processing (ICCSP), 842–847. https://doi.org/10.1109/ICCSP60870.2024.10543808

Kagan, C. R., Arnold, D. P., Cappelleri, D. J., Keske, C. M., & Turner, K. T. (2022). Special report: The Internet of Things for Precision Agriculture (IoT4Ag). Computers and Electronics in Agriculture, 196, 106742. https://doi.org/10.1016/j.compag.2022.106742

Khawaldah, H., Farhan, I., & Alzboun, N. (2020). Simulation and prediction of land use and land cover change using GIS, remote sensing and CA-Markov model. Global Journal of Environmental Science and Management, 6, 215–232. https://doi.org/10.22034/GJESM.2020.02.07

Lazim, F., & Hidayat, I. (2022). Study Internet of Things (IoT) untuk Autonomous Kelembaban Tanah pada Tanaman dengan NodeMCU V3 ESP8266. Metrotech (Journal of Mechanical and Electrical Technology), 1(3), 90–96. https://doi.org/10.33379/metrotech.v1i3.1744

Mas’udi, A. F., Indarto, I., & Mandala, M. (2021). Pemetaan Indeks Kualitas Tanah (IKT) pada Lahan Tegalan di Kabupaten Jember. Jurnal Tanah Dan Iklim, 45(2), 133. https://doi.org/10.21082/jti.v45n2.2021.133-144

Merdekawan, A. P., & Sari, P. (2022). Studi Awal Rancang Bangun Indoor Farming Monitoring System Berbasis IoT dengan Protokol Websocket. Jurnal Ilmu Komputer Dan Agri-Informatika, 9(2), 189–198. https://doi.org/10.29244/jika.9.2.189-198

Motwani, A., Patil, P., Nagaria, V., Verma, S., & Ghane, S. (2022). Soil Analysis and Crop Recommendation using Machine Learning. 2022 International Conference for Advancement in Technology (ICONAT), 1–7. https://doi.org/10.1109/ICONAT53423.2022.9725901

Munabbih, M. I., Widianto, E. D., Windarto, Y. E., & Indrasto, E. Y. (2020). RANCANG BANGUN SISTEM PEMANTAU KUALITAS UDARA MENGGUNAKAN ARDUINO DAN LORA BERBASIS JARINGAN SENSOR NIRKABEL. Transmisi, 22(1), 6–14. https://doi.org/10.14710/transmisi.22.1.6-14

Nuraziza, S., & Sudirman, W. F. R. (2024). Keseimbangan Antara Inovasi Teknologi dan Kepatuhan Regulasi: Tantangan dalam Mengintegrasikan Artificial Intellegence (AI) dalam Manajemen Keuangan. MONEY: JOURNAL OF FINANCIAL AND ISLAMIC BANKING, 2(1), 47–57. https://doi.org/10.31004/money.v2i1.21438

Rahman, F. A., Upriyadi, S. S., Suryawati, S., Murtadlo, M. K., & Khodali, A. (2023). Studi Karakteristik Spasial Lahan Kecamatan Bluto, Sentra Produksi Cabe Jamu (Piper retrofractum Vahl.), Menggunakan Sistem Informasi Geografis (SIG). Agro Bali : Agricultural Journal, 6(3), 681–689. https://doi.org/10.37637/ab.v6i3.1274

Ramadani, G., Prabowo, C., & Prayama, D. (2021). Implementasi Cloud Computing Pada Sistem Penyiraman Tanaman Tomat Otomatis Pada Kebun Tomat. JITSI : Jurnal Ilmiah Teknologi Sistem Informasi, 2(3), 97–102. https://doi.org/10.30630/jitsi.2.3.47

Rouf, A., & Agustiono, W. (2021). Literature Review: Pemanfaatan Sistem Informasi Cerdas Pertanian Berbasis Internet of Things (IoT). https://doi.org/10.31219/osf.io/s53ge

Sharma, K., & Shivandu, S. K. (2024). Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture. Sensors International, 5, 100292. https://doi.org/10.1016/j.sintl.2024.100292

Simanjuntak, D., & Hendrawan, B. (2022). ANALYSIS OF SOIL CHEMICAL CHARACTERISTICS IN PABATU SERDANG BEDAGAI UNIT OIL PALM PLANTATIONS. Journal of Agriculture, 1(01), 4–8. https://doi.org/10.47709/joa.v1i01.1391

Sirait, T., & Lubis, R. P. (2025). STUDI BANDING PENGGUNAAN GIS UNTUK PENGEMBANGAN PARIWISATA BERKELANJUTAN DAN INVENTARISASI LAHAN KRITIS: PENDEKATAN DALAM PERENCANAAN WILAYAH DAN KOTA. GOVERNANCE: Jurnal Ilmiah Kajian Politik Lokal Dan Pembangunan, 11(3), 36–43. https://doi.org/https://doi.org/10.56015/gjikplp.v11i3.370

Subhasree, N., Sajeena, S., Prasanthi, K., & Hakkim, V. M. A. (2022). Spatial Variability Mapping of Soil Chemical Properties Using GIS & GPS. International Journal of Environment and Climate Change, 512–520. https://doi.org/10.9734/ijecc/2022/v12i121488

Tan, J., & Lu, Q. (2022). Garden Project Management System Design Based on IOT and GIS Technology. 2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs), 299–304. https://doi.org/10.1109/AIoTCs58181.2022.00052

Venkateswara Reddy, L., Ganesh, D., Sunil Kumar, M., Gogula, S., Rekha, M., & Sehgal, A. (2024). Applying machine learning to soil analysis for accurate farming. MATEC Web of Conferences, 392, 01124. https://doi.org/10.1051/matecconf/202439201124

Yang, Y. (2024). Smart Garden Management System Based on the combination of Internet of Things and Geographic Information System Technology. International Journal of Communication Networks and Information Security (IJCNIS), 16(1). https://doi.org/10.17762/ijcnis.v16i1.6471

Zavala Díaz, N. A., Olivares-Rojas, J. C., Zavala Díaz, J., Reyes Archundia, E., Téllez Anguiano, A. del C., Chávez Campos, G. M., & Méndez Patiño, A. (2024). Study of Machine Learning Techniques for the Estimation of Soil Moisture in Agriculture. International Journal of Combinatorial Optimization Problems and Informatics, 15(4), 61–71. https://doi.org/10.61467/2007.1558.2024.v15i4.502




DOI: https://doi.org/10.24176/detika.v5i2.15401

Refbacks

  • Saat ini tidak ada refbacks.


Indexed by :

                     



Flag Counter


Dedicated to :



 

Jurnal Dialektika Informatika (DETIKA) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.