APLIKASI JARINGAN SARAF TIRUAN METODE PERCEPTRON PADA PENGENALAN POLA NOTASI

Muhamad Arifin

SMK Telkom Malang Email: arifin@smktelkom-mlg.sch.id

Khoirudin Asfani

Fakultas Teknik, Universitas Negeri Malang Email: koden_denko@yahoo.co.id

Anik Nur Handayani

Fakultas Teknik, Universitas Negeri Malang Email: handayani.aniknur@gmail.com

ABSTRAK

Jaringan saraf tiruan (JST) merupakan pemroses informasi yang meniru cara kerja otak manusia, yaitu bentuk neuron (sel syaraf). Karena kelebihan ini, JST dapat dipakai untuk mengenali pola tertentu, pada penelitian ini pola notasi aritmatika. JST yang dipakai dengan metode perceptron. pola notasi aritmatika mulai dari notasi penjumlahan (+), pengurangan (-), perkalian (x), pembagian (/), dan sama dengan (=). Penentuan pengenalan pola notasi tersebut berdasarkan 3 inputan yang harus dimasukkan yaitu nilai bobot (w) = 0, nilai alpha (α) = 1, dan nilai threshold (θ) = 0. Tujuan dari penelitian yaitu mengetahui tingkat akurasi perhitungan excel dan program delphi pada pengenalan pola notasi pada jaringan saraf tiruan dengan metode perceptron. Metode penelitian dengan 3 cara yang dilakukan yaitu penentuan nilai inputan (x), penentuan nilai target (t), dan perhitungan nilai aktivasi. Hasil dari penelitian ini bahwa pengenalan pola notasi penjumlahan (+), pengurangan (-), perkalian (x), pembagian (/), dan sama dengan (=) dari kedua perhitungan baik secara manual pada program excel dan implementasi pada program Delphi dalam Jaringan Saraf Tiruan (JST) metode Perceptron, didapatkan hasil yang sama dengan selisih 0, sehingga dapat disimpulkan perhitungan manual dengan excel dan implementasi pada program Delphi untuk pengenalan pola notasi penjumlahan (+) adalah presisi. Kemudian untuk pengenalan pola lain seperti pengurangan (-), perkalian (x), pembagian (/), dan sama dengan (=) hasilnya antara perhitungan dan program juga sama.

Kata kunci: JST, perceptron, notasi aritmatika.

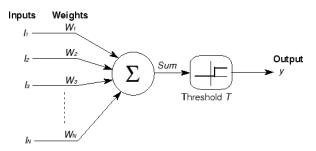
ABSTRACT

Artificial Neural Network (ANN) is an information processing approach that resembles the function or workings of the human brain, namely the form of neurons (neurons cells). Because of these advantages, ANN can be used to recognize arithmetic notation patterns, then ANN used in this research by perceptron method. The pattern of arithmetic notation starts from the notation of addition (+), subtraction (-), multiplication (x), division (/), and equals (=). The determination of the recognition of the notation pattern is based on 3 inputs that must be entered ie the weight value (w) = 0, the alpha value (α) = 1, and the threshold value $(\theta) = 0$. The purpose of this research is to know the level of accuracy of excel calculation and delphi program in recognition of notation pattern on artificial neural network with perceptron method. Research method with 3 ways that is done is determination of value of input (x), determination of target value (t), and calculation of activation value. The result of this research is that the recognition of the pattern of addition notation (+), subtraction (-), multiplication (x), division (/), and equals (=) of both calculations manually on excel program and implementation in Delphi program in Artificial Neural Network (ANN) Perceptron method, obtained the same results with the difference 0, so it can be concluded manual calculations with excel and implementation in Delphi program for recognition of the pattern of addition notation (+) is precision. Then for the introduction of other patterns such as subtraction (-), multiplication (x), division (/), and equals (=) the result between the calculation and the program is also the same.

Keywords: ANN, perceptron, arithmetic notation.

Jurnal SIMETRIS, Vol. 9 No. 1 April 2018

ISSN: 2252-4983


1. PENDAHULUAN

Jaringan Syaraf Tiruan (JST) adalah salah satu cabang ilmu dari bidang ilmu kecerdasan buatan. Salah satu model JST yang sering digunakan untuk pembelajaran adalah perceptron. Metode perceptron merupakan metode pembelajaran dengan pengawasan dalam sistem jaringan syaraf. Dalam merancang jaringan neuron yang perlu diperhatikan adalah banyaknya spesifikasi yang akan diidentifikasi. Jaringan neuron terdiri dari sejumlah neuron dan sejumlah masukan.

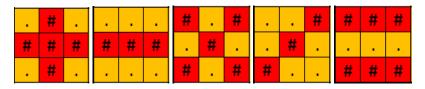
Pada jurnal ini, akan dipaparkan penggunaan sebuah program untuk mengenali pola notasi yaitu notasi penjumlahan (+), pengurangan (-), perkalian (x), pembagian (/), dan sama dengan (=). Untuk mengenali pola notasi, salah satu metode yang dapat dipakai adalah dengan menggunakan (JST). JST merupakan suatu sistem yang bertugas untuk memproses data dengan meniru jaringan saraf biologis. Sehingga sampel notasi yang dijadikan sebagai input dapat dikenali oleh komputer seperti otak yang memproses informasi dan kemudian mengenali pola notasi yang dilihat oleh mata. Karena kelebihan inilah, jaringan saraf tiruan merupakan metode yang tepat untuk mengenali pola notasi. Selain kelebihan-kelebihan di atas, jaringan saraf tiruan juga memiliki kemampuan untuk belajar dan sifat toleransi kesalahan (fault tolerance) [1].

Perkembangan Jaringan Saraf Tiruan telah dimulai pada tahun 1940 dengan mengasosiasikan cara kerja otak manusia dengan logika numerik yang diadaptasi peralatan computer [Muis, Saludin, 2006]. Sederhananya, jaringan saraf tiruan (JST) adalah sistem pemroses informasi yang memiliki karakteristik mirip dengan jaringan saraf biologi, di mana jaringan saraf tiruan menyerupai otak manusia dalam mendapatkan pengetahuan yaitu dengan proses *learning* (belajar) dan menyimpan pengetahuan yang didapat di dalam kekuatan koneksi antarneuron [2].

Jaringan Saraf Tiruan (JST) mampu mengenali kegiatan dengan berbasis pada data. Data akan dipelajari oleh JST, sehingga memiliki kemampuan untuk memberi keputusan terhadap data yang telah dipelajari. JST ditentukan oleh 3 hal, yakni: pola hubungan antarneuron (arsitektur jaringan), metode untuk menentukan bobot penghubung (metode *training/learning/*algoritma) dan fungsi aktivasi [3]. Struktur jaringan saraf tiruan dapat dilihat pada Gambar 1.

Gambar 1. Struktur Jaringan Saraf Tiruan [4]

Neuron Y menerima *input* dari neuron x_1 , x_2 , dan x_3 dengan bobot hubungan masing- masing adalah w_1 , w_2 , dan w_3 . Kemudian ketiga impuls neuron yang ada dijumlahkan, sehingga dapat ditulis persamaan 1 berikut:


$$net = X_1 W_1 + X_2 W_2 + X_3 W_3 (1)$$

Besarnya impuls yang diterima oleh Y mengikuti fungsi aktivasi y = f(net). Apabila nilai aktivasi cukup kuat, maka sinyal akan diteruskan. Nilai fungsi aktivasi (keluaran model jaringan) juga dapat dipakai sebagai dasar untuk mengubah bobot [5][6].

2. METODE PELAKSANAAN

2.1 Penentuan Nilai Inputan (x)

Pada pola notasi "+" dibuat, seperti pada Gambar 2. Setelah itu vektor masukan (pola notasi yang digunakan) dan target (t) yang diinginkan dibentuk, dengan bobot (w) awal = 0 serta bias (t) awal = 1. Lalu setiap titik pada Gambar 2, diambil sebagai komponen vektor. Setiap vektor masukan (pola 1 sampai 5) mempunyai matrik (3×3) = 9 komponen.

Gambar 2. Pola Notasi (+, -, x, /, dan =)

Kemudian kepada titik dalam pola yang bertanda "." diberikan nilai (-1) dan nilai (1) diberikan kepada tiap titik dalam pola yang bertanda "#". Pola-pola notasi tersebut harus dibaca dari kiri ke kanan, dimulai dari baris yang paling atas. Pada setiap pola notasi memiliki vektor masukan pola (x), dan masukan tersebut seperti pada Tabel 1 berikut.

Pola Nilai Nilai Nilai Nilai Nilai Nilai Nilai Nilai Nilai (x7)Masukan (x1)(x2)(x3)(x4)(x5)(x6)(x8)(x9)+ -1 1 -1 1 1 1 -1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 X 1 1 1 -1 -1 1 -1 1 -1 / -1 -1 1 -1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 1 1

Tabel 1. Nilai masukan pada setiap pola notasi

2.2 Penentuan Nilai Target (t)

Pada tugas perceptron ini, program yang dibuat untuk mengenali lima pola notasi yaitu "(+, -, x, /, dan =)". Nilai target (t) pada ke-lima pola notasi ini seperti pada tabel 2.

		8 ()	-		
Pola	Nilai	Nilai	Nilai	Nilai	Nilai
Masukan	(t1)	(t2)	(t3)	(t4)	(t5)
+	1	-1	-1	-1	-1
-	-1	1	-1	-1	-1
X	-1	-1	1	-1	-1
/	-1	-1	-1	1	-1
=	-1	-1	-1	-1	1

Tabel 2. Nilai Target (t) Pada Setiap Pola Notasi

Setelah itu, pemodelan jaringan perceptron dibentuk dan keluaran dari jaringan perceptron (a) yang dibuat pun harus dihitung. Guna mendapatkan bobot (w) dan bias (b) yang diinginkan, program perceptron harus dilatih. Setelah mendapatkan bobot (w) dan bias (b) yang diinginkan, output yang diperoleh dari pemrograman perceptron (a) dibandingkan dengan target (t) yang sudah ditentukan.

2.3 Perhitungan Nilai Aktivasi

Perhitungan untuk nilai aktivasi unit masukan $x_i = s_i$ (i = 1, ..., n). Dihitung respon unit keluaran: net = +b, seperti pada persamaan 2 berikut ini.

$$y_j = f(net_j) = \begin{cases} 1 \text{ jika } net_j > \theta \\ 0 \text{ jika} - \theta \leq net_j \leq \theta \\ -1 \text{ jika } net_i < -\theta \end{cases}$$

3. HASIL DAN PEMBAHASAN

3.1 Perhitungan Manual Menggunakan Program Excel

Pada bab ini akan dilakukan perhitungan manual untuk mencari iterasi dalam pengenalan pola notasi dengan disesuaikan dengan metode perceptron. Contoh kasus perhitungan pengenalan pola notasi penjumlahan menggunakan metode perceptron, dengan data input Nilai bobot (w) = 0, Nilai alfa (α) = 1, Nilai threshold (θ) = 0 dan Nilai bias (b) = 0.

a. Mencari nilai net1, net2, net3, net4, dan net5, pada pola penjumlahan (+) dalam epoch 1

```
\begin{aligned} &\text{Net1} = (x_{1.1} * w_{1.1} \texttt{baru}) + (x_{1.2} * w_{1.2} \texttt{baru}) + (x_{1.3} * w_{1.3} \texttt{baru}) + \dots + (x_{1.9} * w_{1.9} \texttt{baru}) + (bias_1 \texttt{baru}) \\ &\text{Net2} = (x_{2.1} * w_{2.1} \texttt{baru}) + (x_{2.2} * w_{2.2} \texttt{baru}) + (x_{2.3} * w_{2.3} \texttt{baru}) + \dots + (x_{2.9} * w_{2.9} \texttt{baru}) + (bias_5 \texttt{baru}) \\ &\text{Net5} = (x_{5.1} * w_{5.1} \texttt{baru}) + (x_{5.2} * w_{5.2} \texttt{baru}) + (x_{5.3} * w_{5.3} \texttt{baru}) + \dots + (x_{5.9} * w_{5.9} \texttt{baru}) + (bias_5 \texttt{baru}) \end{aligned}
```

b. Mencari nilai y1=f(net1), y2=f(net2), y3=f(net3), y4=f(net4), dan y5=f(net5), pada pola penjumlahan (+) dalam epoch 1

y1, y2, y3, y4, dan y5= jika, (net1) > θ , maka bernilai 1; jika, (net1) < $-\theta$, maka bernilai -1; selain itu, maka bernilai 0.

c. Mencari nilai Δbobot1 & Δbias1, Δbobot2 & Δbias2, Δbobot3 & Δbias3, Δbobot4 & Δbias4, dan Δbobot5 & Δbias5, pada pola penjumlahan (+) dalam epoch 1

```
\begin{array}{l} \Delta bobot1 \ \& \ \Delta bias1: \\ \Delta W_{1\_1} = alpha*target1*X_1 = 1*1*-1 = -1 \\ \Delta W_{1\_2} = alpha*target1*X_2 = 1*1*1 = 1 \\ \dots \\ \Delta W_{1\_9} = alpha*target1*X_9 = 1*1*-1 = -1 \\ \Delta B_1 = alpha*target1*bias = 1*1*1 = 1 \\ \Delta bobot2 \ \& \ \Delta bias2: \\ \Delta W_{2\_1} = alpha*target2*X_1 = 1*-1*-1 = 1 \\ \Delta W_{2\_2} = alpha*target2*X_2 = 1*-1*1 = -1 \\ \dots \\ \Delta W_{2\_9} = alpha*target2*X_9 = 1*-1*-1 = 1 \\ \Delta B_2 = alpha*target2*bias = 1*-1*1 = -1 \\ \dots \\ \Delta bobot5 \ \& \ \Delta bias5: \\ \Delta W_{5\_1} = alpha*target5*X_1 = 1*-1*-1 = 1 \\ \Delta W_{5\_9} = alpha*target5*X_2 = 1*-1*1 = -1 \\ \dots \\ \Delta W_{5\_9} = alpha*target5*X_9 = 1*-1*-1 = 1 \\ \Delta B_5 = alpha*target5*bias = 1*-1*1 = -1 \\ \end{array}
```

d. Mencari nilai bobot1_baru & bias1_baru, bobot2_baru & bias2_baru, bobot3_baru & bias3_baru, bobot4_baru & bias4_baru, dan bobot5_baru & bias5_baru, pada pola penjumlahan (+) dalam epoch 1

```
\begin{array}{l} bobot1\_baru \ \& \ bias1\_baru: \\ Wbaru_{1\_1} = W_{1\_1} + \Delta W_{1\_1} = 0 + -1 = -1 \\ Wbaru_{1\_2} = W_{1\_2} + \Delta W_{1\_2} = 0 + 1 = 1 \\ ... \\ Wbaru_{1\_9} = W_{1\_9} + \Delta W_{1\_9} = 0 + -1 = -1 \\ Bbaru_{1} = B_{1} + \Delta B_{1} = 0 + 1 = 1 \\ \\ bobot2\_baru \ \& \ bias2\_baru: \\ Wbaru_{2\_1} = W_{2\_1} + \Delta W_{2\_1} = 0 + 1 = 1 \\ Wbaru_{2\_2} = W_{2\_2} + \Delta W_{2\_2} = 0 + -1 = -1 \\ ... \\ Wbaru_{2\_9} = W_{2\_9} + \Delta W_{2\_9} = 0 + 1 = 1 \\ Bbaru_{2} = B_{2} + \Delta B_{2} = 0 + -1 = -1 \\ ... \\ \\ bobot5\_baru \ \& \ bias5\_baru: \\ Wbaru_{5\_1} = W_{5\_1} + \Delta W_{5\_1} = 0 + 1 = 1 \\ Wbaru_{5\_2} = W_{5\_2} + \Delta W_{5\_2} = 0 + -1 = -1 \\ ... \\ Wbaru_{5\_9} = W_{5\_9} + \Delta W_{5\_9} = 0 + 1 = 1 \\ Bbaru_{5} = B_{5} + \Delta B_{5} = 0 + -1 = -1 \\ \end{array}
```

| Target1 | Target2 | Target3 | Target4 | Target5 | Alfa | net1 | net2 | net3 | net4 | net5 | v1=finet) | v2=finet) | v3=finet) | v4=finet) | v4=fine

Hasil dari perhitungan ditunjukkan pada gambar 3 berikut ini.

Gambar 3. Hasil Analisis Perhitungan pada Program Excel

Kemudian, nilai bobot1_baru & bias1_baru hingga bobot5_baru & bias5_baru pada perhitungan pola penjumlahan (+), digunakan untuk perhitungan pada pola pengurangan (-) dalam *epoch* 1. Ulangi langkah 1-4 seperti sebelumnya, untuk perhitungan pada pola pengurangan (-) dalam *epoch* 1, hingga nilai bobot1_baru & bias1_baru hingga bobot5_baru & bias5_baru pada perhitungan pola pengurangan (-) ditemukan. nilai bobot1_baru & bias1_baru hingga bobot5_baru & bias5_baru pada perhitungan pola pengurangan (-) digunakan untuk perhitungan pada pola perkalian (x) selanjutnya, begitu juga dengan perhitungan pada pola pembagian (/) dan sama dengan (=). Hasil perhitungan secara keseluruhan dalam pengenalan pola pada *epoch* 1 dapat dilihat pada Gambar 4.

Input	Tar	get1 Tar	get2 Tar	get3	Target	4 Target	Alfa	ne ne	t1	net2	net3	net4	net5	у1	1=f(net)	y2=f(r	net) y3	=f(net)	y4=f(r	net) y5	=f(net)	ΔΒα	bot1	Δ Βο	bot2
·															in	nisialisa	asi								
pola1 bia	as						Т	1						Т								Δw1	Δbias	1 Δw2	∆bias
-1 1 -1 1 1 1 1 -1 1 -1		1 -	1 -	-1	-1	-1	1	0,0	00	0,00	0,00	0,00	0,00		0,00	0,00	0	0,00	0,0	0	0,00	-1 1 · 1 1 ·	1 1	1 -1 1 -1 -1 -1 1 -1 1	-1
pola2																						Δw1	Δbias		Δbias
-1 -1 -1 1 1 1 1 -1 -1 -1		1 :	1 .	-1	-1	-1	1	6,0	00	-6,00	-6,00	-6,00	-6,00		1	-1		-1	-1		-1	1 1 -1 -1 - 1 1	1 -1	-1 -1 -1 1 1 1 -1 -1 -1	. 1
pola3																						Δw1	Δbias		∆bias
1 -1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 -	1	1	-1	-1	1	-4,	00	4,00	5,00	5,00	5,00		-1	1		1	1		1	0 0 0 0 0	-1	-1 1 -1 1 -1 1 -1 1 -1	-1
pola 4																						Δw1	Δbias		Δbias
-1 -1 1 -1 1 -1 1 1 -1 -1		1 -	1 -	-1	1	-1	1	-5,	00	-2,00	2,00	-5,00	-5,00		-1	-1		1	-1		-1	0 0 0 0	-1	0 0 0	-1
pola 5																						Δw1	Δbias		∆bias
1 1 1 -1 -1 -1 1 1 1 1		1 -	1 .	-1	-1	1	1	2,0	00	-9,00	4,00	-1,00	-2,00		1	-1		1	-1		-1	-1 -1 - 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	1 -1	0 0 0	-1
∆ Bobot3	3	Δ Bol	bot4		Δ Bob	ot5		Bobot		1		Bobot Ba		\Box		Bobot E	-				Baru4	Ļ		obot Barı	
							0	0	0	0	0	0	_	,	0	0	0	0	0	0	0	0	0	0 0	0
Δw3 Δb	pias3	Δw4	Δbias4	1 4	w5	Δbias5		0 w1 bar	0	bias	- 1	0 2 baru	0 hi	as		0 /3 baru	0	bias		0 v4 bar	0	bias		0 0	bia
1 -1 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 -1 1	Долоз		1 1	201033	-1	1	-1	Bids	1	_	1		1	-1	1	5105	1	-1	1	Bids	1	-1 1	_
	-1	-1 -1 -1	-1		1 -1	-1	1	1	1	1	-1	_	_	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1 -1	-1
1 -1 1	oias3	1 -1 1	Abine	_	1 1	Abines	-1	v1 bar	-1	bias	1		1		1	-1	1	bias	1	-1 v4 bar	1	hina	1	-1 1	late
Δw3 Δb	J1855	Δw4	∆bias4		w5 0 0	∆bias5	0	Wi bar	0	Dias	0	2 baru -2	0	as	1	3 baru -1	1	Dias	1	/4 bar -1	1	bias	1	baru -1 1	bia
	-1	0 0 0	-1	-	0 0	-1	0	0	0	0	0	_	0	•	-1 1	-1 -1	-1 1	-2	-1 1	-1 -1	-1 1	-2	-1 1	-1 -1 -1 1	_
Δw3 Δb	oias3	Δw4	∆bias4			∆bias5	١	w1 bar	u	bias	W	2 baru	bi	as	W	3 baru		bias	V	v4 bar	u	bias	w.	baru	bia
0 0 0	1	-1 1 -1 1 -1 1	4	-	1 -1	-1	0	2	0	-1	-1 1	_	1 -	1	-1	-1 -1	-1	-1	0	-2	0	-3	0	0 0	_
0 0 0		-1 1 -1		-1	1 -1		0	2	0		-1	-1 -	1		1	-1	1		0	0	0		0	0 0	
	oias3	Δw4	∆bias4			∆bias5		w1 bar		bias	_	2 baru	_	as	_	3 baru		bias	_	v4 bar	_	bias	_	baru	bia
1 1 -1 1 -1 1 -1 1 1	-1	-1 -1 1 -1 1 -1 1 -1 -1	_	0	0 0	-1	0	0	0	-2	-1	-1	_	2	0	-2	0 0 2	-2	-1 -1	-1 -1	-1	-2	0	0 0	-4
1 1 1	pias3	1 -1 -1 Δw4	Δbias4			∆bias5	_	v1 bar	0	bias	-1	-1 - 2 baru	1 hi	as		0 /3 baru	_	bias		-1 v4 bar	-1	bias		0 0 baru	bia
Aw3 Ab											W					- build		2103							MIG
Δw3 Δb	31033	0 0 0		1	1 1		-1	1	-1		-1	-1 -	1		1	-1	-1		-1	-1	1		1	1 1	

Gambar 4. Hasil Analisis Perhitungan Pada Program Excel Epoch 1

Pada iterasi 1 pengenalan pola penjumlahan, pengurangan, perkalian, pembagian dan sama dengan nilai target (t) belum sesuai dengan nilai f(*net*) atau nilai (y). Sehingga dilakukan iterasi ke 2 dengan hasil perhitungan seperti pada Gambar 5.

Input	Та	arget1	Target2	Targ	et3	Target	t4 Targe	t5 A	lfa	net1	net2	net3	net4	net5	y1=f(ne	et) y2=f(ne	y3=f(net) y4=f(net) y	5=f(net)	ΔΒ	obot1	ΔΒ	obot2
							·									inisialisas	i							
pola1 bia	ias			т —				_	_			I				_		1			Δw1	Δbia	s1 Δw2	Δbias
1 1 -1	103				_			_														0	1 -1	
_	1	1	-1	-1		-1	-1		1	6,00	0,00	-4,00	-8,00	-10,00	1	0,00	-1	-1	.	-1		0 1	-1 -1	
1 1 -1																					0 0	0	1 -1	1
pola2																					Δw1	Δbia		∆bia:
1 -1 -1																					1 1			1
1 1 1 1 1 -1 -1	1	-1	1	-1	.	-1	-1		1	3,00	-2,00	-1,00	-5,00	-15,00	1	-1	-1	-1		-1	-1 -1 1 1		1 1	1 1
pola3	_																_				Δw1	_		Δbias
1 -1 1	_			_	_																	0	0 0	
1 1 -1 1	1	-1	-1	1		-1	-1		1	-7,00	-4,00	-6,00	-2,00	-4,00	-1	-1	-1	-1	.	-1	0 0	0 -1		0 -1
1 -1 1																					0 0	0	0 0	0
pola 4	\perp																				Δw1			Δbia
1 -1 1				١																	0 0		0 0	_
1 1 -1 1 1 -1 -1	1	-1	-1	-1		1	-1		1	-8,00	-1,00	-4,00	1,00	-9,00	-1	-1	-1	1			0 0		0 0	0 -1
pola 5	-				-			+													Δw1			Δbia
1 1 1																						0		0
1 -1 -1 1	1	-1	-1	-1		-1	1		1	-1,00	-16,00	-5,00	-4,00	4,00	-1	-1	-1	-1	.	1		0 -1		0 -1
1 1 1																					0 0	0	0 0	0
Δ Bobot3	3	Δ	Bobot4	\neg		\ Bob	ot5		Bol	ot Baru	1	В	obot Bar	u2		Bobot Ba	ru3		Bobot	t Baru4			Bobot Bar	u5
								-1	1	-1		-1	-1 -:	l	1	-1 -	1	-1	-1	1		1	1 1	
							[1	1	. 1	-3		-1 1	-3	1		L -3	-1	-1	-1	-3	-1	-3 -:	
								-1	1	-1		-1	-1 -:	L L	-1	-1	l .	1	-1	-1		1	1 1	
	oias3		_		Δν		∆bias5		w1 b	_	bias	_	baru	bia:	_	w3 baru	bias		v4 bar	_	bias		5 baru	bia
0 0		0 0	0	-	_	0		-1	1	-1	4 1	_	-2 C	_	1	-1 -		-1	-1	1		1	1 1	_
	-1	0 0	_		0 0	0	-1	1	1	_	-2	_	-2 C		1		L -4	-1	-1	-1	-4	-1	-3 -:	_
0 0		0 0	0	_	_	_		-1	w1 b		1.1	_	-2 C		-1	-1 w3 baru	L	1	-1 v4 bar	-1		1	1 1 5 baru	
Δw3 Δb	oias3	Δw4	Δbi	_	Δw O O	0 0	∆bias5	0	WI 0	_	bias	_	-3 -:	bias	1	-1 -	bias	-1	-1	1	bias	1	o baru	bi
_	-1	0 0	_		0 0	_	-1	0	1	_	-3	_	-1 1	_	1		1 -5	-1	-1	-1	-5	-1	-3 -:	_
0 0	-	0 0	0	_	0 0	_	-	0	1 2	_	1	_	-3 -:	_	-1	_		1	-1	-1	_	1	1 1	_
	oias3	Δw4			Δν		Δbias5		w1 b	_	bias	_	baru	bias	_	w3 baru	bias	_	v4 bar	_	bias		5 baru	bi
-1 1		0 0	0		0 0			0	2				-3 -:		2)	-1	-1	1		1	1 1	-
1 -1	1	0 0	0 -	1 (0 0	0	-1	0	0	0	-4	1	-1 1	-4	0	0 (-4	-1	-1	-1	-6	-1	-3 -:	
-1 1		0 0	0	-	0 0	0		0	2	0		-1	-3 -:		0	-2	2	1	-1	-1		1	1 1	
Δw3 Δb	oias3	Δw4	Δbi	as4	Δν	v5 .	∆bias5		w1 b	aru	bias	w2	baru	bias	5 1	w3 baru	bias	٧	v4 bar	ru	bias	W	5 baru	bi
0 0		0 0	0	-	0 0	0		0	2	0		-1	-3 -:	L	2	-2 ()	-1	-1	1		1	1 1	
	-1	0 0			0 0		-1	0	0	_	-5		-1 1	_	0		-5	-1	-1	-1	-5	-1	-3 -:	-
0 0		0 0	0		0 0			0	2	_		_	-3 -3	_	0		2	1	-1	-1		1	1 1	
	oias3	∆w4	_	_	Δν		∆bias5		w1 b		bias	_	baru	bias	_	w3 baru	bias	_	v4 bar	_	bias		5 baru	bi
0 0		0 0	0		0 0	_		0	2	_		-1	-3 -:	_	2			-1	-1	1		1	1 1	_
	-1	0 0			0 0	_	1	0	0	_	-6		-1 1	_	0		-6	-1	-1	-1	-6	-1	-3 -:	<u> </u> -€
0 0		0 0	0		0 0	0		0	2	0		-1	-3 -:	L	0	-2	2	1	-1	-1		1	1 1	

Gambar 5. Hasil Analisis Perhitungan Pada Program Excel Epoch 2

Pada iterasi kedua seperti pada Gambar 5, didapatkan hasil bahwa pada pengenalan pola penjumlahan (+) nilai target (t) belum sesuai dengan nilai f(net) atau nilai (y), pola pengurangan (-) nilai target (t) belum sesuai dengan nilai f(net), pengenalan pola perkalian (x) nilai target (t) belum sesuai dengan nilai f(net), pola pembagian (-) nilai target (t) sudah sesuai dengan nilai f(net), kemudian pola sama dengan (-) nilai target (t) sudah sesuai dengan nilai (-) Untuk pola yang belum memenuhi target dilakukan iterasi ketiga.

Input	Target1	Target2	Target3	Target4	1 Target5	Alfa	net1	net2	net3	net4	net5	y1=f(net)) y2=f(net)	y3=f(net)	y4=f(net	y5=f(net)	ΔΒ	obot1	Δ Bol	oot2
													nisialisasi							
pola1 bias																	Δw1	∆bias1		∆bias2
1 1 1 1	1	-1	-1	-1	-1	1	-2,00	-7.00	-14.00	-11.00	-13.00	-1	-1	-1	-1	-1	1 1		0 0 0	
-1 1 -1	_	-	_	_	_	_		.,	1 - 1,000	,	,	_				-	-1 1		0 0 0	
pola2																	Δw1	∆bias1		∆bias2
1 1 1 1	-4	4	-1	-1	-1	1	-4,00	4.00	-7.00	-8.00	-18.00	-1	1	-1	-1	-1	0 0		0 0 0	
-1 -1 -1	1	-	1	1	1	1	4,00	4,00	,,,,,	0,00	10,00	-	*	-	1	1	0 0		0 0 0	
pola3																	Δw1			∆bias2
1 -1 1 -1 1 -1 1	-1	-1	1	-1	-1	1	-17.0	7.00	0.00	-5.00	-7,00	-1	-1	0.00	-1	-1		0 -1	0 0 0	-1
1 -1 1	-1		1			_	-17,0	-7,00	0,00	-5,00	-7,00		~	0,00		1		0 -1	0 0 0	1 2
pola 4																	Δw1			∆bias2
-1 -1 1 -1 1 -1 1	-1	-1	-1	1	-1	1	-14.0	-4,00	-2.00	-2.00	-12.00	-1	-1	-1	-1	-1		0 -1	0 0 0	-1
1 -1 -1	-1			1		-	-14,0	-4,00	-2,00	-2,00	-12,00		~			1	0 0		0 0 0	1 2
pola 5																	Δw1	∆bias1		∆bias2
1 1 1	-1	-1	-1	-1	1	1	-9,00	-19,0	-5,00	-8,00	1,00	-1	-1	-1	-1	1	0 0		0 0 0	-1
1 1 1	-1				1	-	-5,00	-15,0	-5,00	-8,00	1,00		~			1 -	0 0		0 0 0	
∆ Bobot3		∆ Bobot4	1	Δ Bobo	ot5		Bobot Ba	ru1		Bobot Ba	ru2		Bobot Baru	13	Во	bot Baru4		Во	bot Baru	5
					-	0	2	0	-1	-3 -		2	-2 0		-	1 1	_	_	1 1	- 1
					\vdash	0	2	0 -6	-1	-1 :		0	0 0	-6	-	1 -1	-6		3 -1	-6
Δw3 Δbia	as3 Δ	w4 Δb	ias4	Δw5 /	∆bias5	W	1 baru	bia		2 baru	bias		/3 baru	bias		paru	bias		baru	bias
0 0 0	0		0			-1	3	-1	-1	-3 -	1	2	-2 0		-1 -	1 1		1	1 1	
0 0 0 -1			-1 0		-1	1	_	1 -5	1	-1 :	_	0	0 0	-7	_	1 -1	-7	_	3 -1	-7
0 0 0 0 Δbia	0 0		ias4		∆bias5	-1 W	3 /1 baru	-1 bia	-1	-3 - 2 baru	bia:	0	-2 2 /3 baru	bias	1 -	1 -1 paru	bias	_	1 1 baru	bias
0 0 0	0		0		201023	-1		-1	-1	-3 -	_	2	-2 0	bids		1 1	Bids		1 1	Bids
0 0 0 -1				0 0	-1	1	_	1 -6	1	-1 :		0	0 0	-8	_	1 -1	-8		3 -1	-8
0 0 0	0			0 0		-1		-1	-1	-3 -		0	-2 2		_	1 -1			1 1	
Δw3 Δbia	0 O		ias4 0		∆bias5	-1	1 baru	bia	-1	2 baru -3 -	bia:	5 W	/3 baru	bias	_	oaru 1 1	bias	_	baru 1 1	bias
-1 1 -1 1			-1 0		-1	1	1	1 -7	1	-1 :	_	-1	1 -1	-7	_	1 -1	-9	_	3 -1	-9
1 -1 1	0	0 0	0	0 0		-1	3	-1	-1	-3 -	1	1	-3 3		1 -	1 -1		1	1 1	
∆w3 ∆bia					∆bias5	_	1 baru	bia	_	2 baru	bia	_	/3 baru	bias		oaru	bias	_	baru	bias
0 0 0 -1	-1 -			0 0	-1	-1	3	-1 1 -8	-1	-3 -		-1	-3 1 1 -1	-8	_	2 2	-8	_	1 1 3 -1	-10
0 0 0	1 .			0 0	11	-1	_	-1	-1	-3 -		1	-3 3	- "		2 -2	-0		1 1	-10
Δw3 Δbia	_	_	_		∆bias5		1 baru	bia		2 baru	bias		/3 baru	bias		oaru	bias		baru	bias
0 0 0	0			0 0		-1		-1	-1	-3 -		3	-3 1		_	2 2		_	1 1	
0 0 0 -1			-1 0		1	1		1 -9	1	-1 :		-1	1 -1 -3 3	-9	_	-2	-9	_	3 -1	-9
0 0 0	0	0 0	0	0 0		-1	3	-1	-1	-3 -	1	1	-3 3		2 -	2 -2		1	1 1	

Gambar 6. Hasil Analisis Perhitungan Pada Program Excel Epoch Ketiga

Pada iterasi ketiga seperti pada Gambar 6, didapatkan hasil bahwa pada pengenalan pola penjumlahan (+) nilai target (t) belum sesuai dengan nilai f(net), pola pengurangan (-) nilai target (t) sudah sesuai dengan nilai f(net), pengenalan pola perkalian (x) nilai target (t) belum sesuai dengan nilai f(net). Untuk pola yang belum memenuhi target dilakukan iterasi ketiga.

Input	Tar	get1 Tar	get2 T	arget3	Target	4 Target	5 Alfa	net	t1	net2	net3	net4	n	et5	y1=f(net) y2=f(ı	net) y	3=f(net)	y4=f(net) y	y5=f(net)	ΔΙ	3obot1		Δ Bob	oot2
															i	nisialis	asi									
pola1 bia	as																					Δw:	Δbi	as1	Δw2	Δbias
-1 1 -1 1 1 1 1 -1 1 -1	:		1	-1	-1	-1	1	4,0	00	-10,00	-24,00	-17,0	0 -10	6,00	1	-1		-1	-1		-1	0 0 0 0 0 0	0	1 0	0 0 0 0 0 0	
pola2 -1 -1 -1 1 1 1 1 -1 -1 -1	-	1	1	-1	-1	-1	1	-7,0	00	1,00	-13,00	-10,0	0 -2	1,00	-1	1		-1	-1		-1	0 0 0 0	0 -	0	0 0 0 0 0 0	Δbias
pola3 1 -1 1 -1 1 -1 1 1 -1 1		1 -	1	1	-1	-1	1	-20,	,00	-10,00	6,00	-3,00) -10	0,00	-1	-1		1	-1		-1	Δw: 0 0 0 0 0 0	0 -	0 0		Δbias
pola 4 -1 -1 1 -1 1 -1 1 1 -1 -1		1 -	1	-1	1	-1	1	-17,	,00	-7,00	-5,00	4,00	-19	5,00	-1	-1		-1	1		-1	Δw: 0 0 0 0 0 0	0 -	0	Δw2 0 0 0 0 0 0	Δbias
pola 5 1 1 1 -1 -1 -1 1 1 1 1	-	1 -	1	-1	-1	1	1	-12,	,00	-22,00	-8,00	-11,0	0 -2	.,00	-1	-1		-1	-1		-1	0 0 0 0 0 0 0	0 -	0	0 0	Δblas
Δ Bobot3	3	Δ Во	bot4		Δ Bob	ot5		Bobot	Baru1	L		Bobot B	aru2			Bobot B	3aru3			Bobo	t Baru4			Bobot	Baru5	5
							-1	3	-1		-1	-3	-1		3	-3	1		-2	-2	2		1	1	1	
							-1	3	-1	-9	-1	-1 -3	1 -1	-9	-1 1	-3	-1 3	-9	-2 2	-2	-2 -2	-9	-1 1	-3 1	-1 1	-9
Δw3 Δb	bias3	Δw4	Δbia	54	Δw5	∆bias5		v1 baru		bias		2 baru		bias		/3 baru	_	bias		v4 bai	_	bias		w5 bar		bia
0 0 0		0 0 0	_	_	0 0		-1	3	-1		-1	-3	-1		3	-3	1		-2	-2	2		1	1	1	
		0 0 0			0 0	-1	1	1	1	-8	1	-1	1	-10	-1	1	-1	-10	-2	0	-2	-10	-1	-3	-1	-1
0 0 0		0 0 0		_	0 0		-1	3	-1		-1	-3	-1	1.0	1	-3	3	1.0	2	-2	-2	1.0	1	1	1	
Δw3 Δb	bias3	Δw4	Δbia	_	Δw5	∆bias5	_	v1 baru 3		bias	-1	2 baru -3	1	bias	3	/3 baru -3	1	bias	-2	v4 baı -2	ru 2	bias	1	w5 bar	1	bia
0 0 0	-1	0 0 0	-1	0	0 0	-1	-1 1	1	-1 1	-9	1	-1	1	-9	-1	1	-1	-11	-2	-2	-2	-11	-1	-3	-1	-1
0 0 0		0 0 0)	0	0 0		-1	3	-1		-1	-3	-1		1	-3	3		2	-2	-2		1	1	1	
	bias3	∆w4	∆bia	_	Δw5	∆bias5	_	v1 baru	ı	bias		2 baru		bias		/3 baru		bias		v4 baı	_	bias		w5 bar	u	bia
0 0 0		0 0 0	_	_	0 0		-1	3	-1		-1	-3	-1		3	-3	1		-2	-2	2		1	1	1	
		0 0 0			0 0	-1	1	1	1	-10	1	-1	1	-10	-1	1	-1	-10	-2	0	-2	-12	-1	-3	-1	-1
0 0 0		0 0 0	_		0 0		-1	3	-1		-1	-3	-1		1	-3	3		2	-2	-2		1	1	1	
	bias3	∆w4	∆bia	_	∆w5	∆bias5	_	v1 baru		bias		2 baru		bias		/3 baru		bias		v4 baı	_	bias		w5 bar	u	bi
0 0		0 0 0			0 0		-1	3	-1		-1	-3	-1		3	-3	1		-2	-2	2		1	1	1	1
		0 0 0			0 0	-1	1	1	1	-11	1	-1	1	-11	-1	1	-1	-11	-2	0	-2	-11	-1	-3	-1	-1
0 0 0		0 0 0	_		0 0		-1	3	-1		-1	-3	-1		1	-3	3		2	-2	-2		1	1	1	
	bias3	∆w4	∆bia		∆w5	∆bias5		v1 baru		bias		2 baru		bias		/3 baru		bias	_	v4 baı	-	bias		w5 bar	_	bi
0 0 0	- 4	0 0 0	_	1	1 1		-1	3	-1		-1	-3	-1		3	-3	1		-2	-2	2		2	2	2	1
		0 0 0			-1 -1	1	1	1	1	-12	1	-1	1	-12	-1	1	-1	-12	-2	0	-2	-12	-2	-4	-2	-1
0 0 0		0 0 0		1	1 1		-1	3	-1		-1	-3	-1		1	-3	3		2	-2	-2		2	2	2	

Gambar 7. Hasil Analisis Perhitungan Pada Program Excel Epoch Keempat

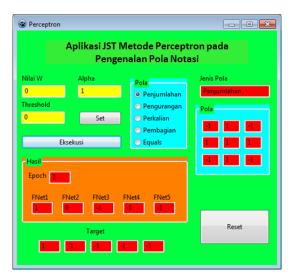
Pada iterasi keempat seperti pada Gambar 7, didapatkan hasil bahwa pada pengenalan pola penjumlahan (+) nilai target (t) sudah sesuai dengan nilai f(net) dan pengenalan pola perkalian (x) nilai target (t) sudah sesuai dengan nilai f(net).

Kesimpulan dari keempat iteraksi tersebut, dengan menggunakan model Perceptron dimana alpha = 1, threshold = 0, bobot dan bias awal = 0, maka didapatkan hasil untuk mengenali pola 1 (+), iterasi dilakukan sampai *epoch* 4, untuk mengenali pola 2 (-), iterasi dilakukan sampai *epoch* 3, untuk mengenali pola 3 (x), iterasi dilakukan sampai *epoch* 4, untuk mengenali pola 4 (/), iterasi dilakukan sampai *epoch* 2, dan untuk mengenali pola 5 (=), iterasi dilakukan sampai *epoch* 2.

3.2 Implementasi Antarmuka Program Perceptron

Tampilan program pada pengenalan pola notasi metode perceptron yang telah dibuat dapat dilihat pada Gambar 8.

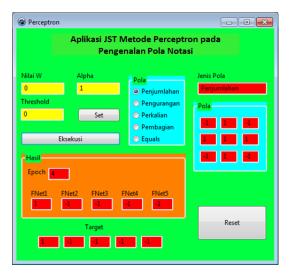
Gambar 8. Tampilan Awal Program Perceptron Untuk Pengenalan Pola Notasi


ISSN: 2252-4983

Untuk menjalankan program terlebih dahulu memasukkan nila w =0, nilai alpha=0, threshold=0, kemudian pilih pola penjumlahan, kemudian klik tombol set dan lalukan ekseskusi, untuk mereset ulang pilih tombol reset. Setelah dieksekusi pengenalan pola penjumlahan pada *epoch* 1 untuk nilai target (t) belum sesuai dengan nilai f (*net*), sehingga dilakukan eksekusi lagi, hasil lihat Gambar 9.

Gambar 9. Tampilan Hasil Program Perceptron Untuk Pengenalan Pola Notasi Pada Epoch 1

Eksekusi selanjutnya untuk pengenalan pola penjumlahan pada *epoch* 2, ternyata untuk nilai target (t) belum sesuai dengan nilai f (*net*), sehingga dilakukan eksekusi lagi, hasil lihat gambar 10.


Gambar 10. Tampilan Hasil Program Perceptron Untuk Pengenalan Pola Notasi Pada Epoch 2

Pengenalan pola penjumlahan pada *epoch* 3, ternyata untuk nilai target (t) belum sesuai dengan nilai f (*net*), sehingga dilakukan eksekusi lagi, hasil lihat Gambar 11.

Kemudian eksekusi selanjutnya pada *epoch* 4, untuk nilai target (t) sudah sesuai dengan nilai f (*net*), dan ini sesuai perhitungan pada excel, sehingga tidak perlu dilakukan eksekusi lagi, hasil *epoch* 4 lihat Gambar 3.10. Selain itu pada program ini juga akan memberikan notifikasi atau pemberitahuan bahwa nilai f (*net*) dan target (t) bernilai sama pada *epoch* 4, tampilan bisa dilihat pada Gambar 12 dan Gambar 13.

Gambar 11. Tampilan Program Perceptron Untuk Pengenalan Pola Notasi Pada Epoch 3

Gambar 12. Tampilan Hasil Program Perceptron Untuk Pengenalan Pola Notasi Pada Epoch 4

Gambar 13. Tampilan Notifikasi Program *Perceptron* Untuk Pengenalan Pola Notasi Pada *Epoch* 4 Telah Berhasil

Hasil pengenalan pola notasi penjumlahan (+), pengurangan (-), perkalian (x), pembagian (/), dan sama dengan (=) dari kedua perhitungan baik secara manual pada program *excel* dan implementasi pada program Delphi dalam Jaringan Saraf Tiruan (JST) metode Perceptron, didapatkan hasil yang sama dalam pengenalan pola, tabulasi data hasil ditunjukkan pada Tabel 3 berikut.

Tabel 3. Tabulasi data hasil pengenalan pola notasi pada metode perceptron

Pola		Perh		H			
yang dipilih	Penger	nalan Pola pada Excel	U	alan Pola pada Program	Excel (epoch)	Program (epoch)	Selisih
+	Inputan	Nilai $(w) = 0$	Inputan	Nilai $(w) = 0$			
		Nilai $(\alpha) = 1$		Nilai $(\alpha) = 1$	4	4	0
		Nilai $(\theta) = 0$		Nilai $(\theta) = 0$			
+	Inputan	Nilai $(w) = 0$	Inputan	Nilai $(w) = 0$			
		Nilai (α) = 0,1		Nilai (α) = 0,1	9	9	0
		Nilai $(\theta) = 0$		Nilai $(\theta) = 0$			

Jurnal SIMETRIS, Vol. 9 No. 1 April 2018

ISSN: 2252-4983

Berdasarkan Tabel 3.1 bahwa pada pengenalan pola notasi studi kasus pola penjumlahan didapatkan hasil yang sama antara perhitungan manual dengan *excel* dan implementasi pada program Delphi dengan selisih 0, sehingga dapat disimpulkan perhitungan manual dengan *excel* dan implementasi pada program Delphi untuk pengenalan pola (studi kasus pola penjumlahan) adalah presisi. Kemudian untuk pengenalan pola yang lain seperti pengurangan (-), perkalian (x), pembagian (/), dan sama dengan (=) hasilnya antara perhitungan dan program juga sama, namun tidak dijelaskan secara keseluruhan pada laporan ini. Data lebih lengkap mengenai perhitungan manual program *excel* dengan inputan yang berbeda dapat dilihat pada lampiran laporan.

4. KESIMPULAN

Penggunaan Jaringan Saraf Tiruan (JST) metode perceptron dapat digunakan untuk penentuan pengenalan pola notasi penjumlahan (+), pengurangan (-), perkalian (x), pembagian (/), dan sama dengan (=). Penentuan pengenalan pola notasi tersebut berdasarkan 3 inputan yang harus dimasukkan yaitu nilai bobot (w) = 0, nilai alpha (α) = 1, dan nilai threshold (θ) = 0.

Hasil pengenalan pola notasi penjumlahan (+), pengurangan (-), perkalian (x), pembagian (/), dan sama dengan (=) dari kedua perhitungan baik secara manual pada program *excel* dan implementasi pada program Delphi dalam Jaringan Saraf Tiruan (JST) metode Perceptron, didapatkan hasil yang sama dengan selisih 0, sehingga dapat disimpulkan perhitungan manual dengan *excel* dan implementasi pada program Delphi untuk pengenalan pola (studi kasus pola penjumlahan) adalah presisi. Kemudian untuk pengenalan pola yang lain seperti pengurangan (-), perkalian (x), pembagian (/), dan sama dengan (=) hasilnya antara perhitungan dan program juga sama.

DAFTAR PUSTAKA

- [1] Nugroho, Fx. Henry. Pengenalan Wajah dengan Jaringan Saraf Tiruan Backpropogation. Yogyakarta: Graha Ilmu.
- [2] Islam, M.J, dkk. 2009. Neural Network Based Handwritten Digits Recognition- An Experiment and Analysis. University of Windsor, Canada.
- [3] Siang, Jong Jek. 2005. *Jaringan Saraf Tiruan dan Pemrogramannya Menggunakan MATLAB*. Yogyakarta: Penerbit Andi.
- [4] Kawaguchi, Kiyoshi, 2000. A Multithreaded Software Model for Backpropagation Neural Network Applications. Department of Electrical and Computer Engineering: The University of Texas At El Paso. Thesis Online, diakses tanggal 10 November 2017.
- [5] Sri Kusumadewi & Sri Hartati. 2006. Neuro Fuzzy-Integrasi Sistem Fuzzy dan Jaringan Syaraf. Yogyakarta: Graha Ilmu.
- [6] Muis, Saludin. 2006. Teknik Jaringan Saraf Tiruan. Yogyakarta. Penerbit Andi.