Implementasi Algoritma K-Nearest Neighbor untuk Klasifikasi Jurusan pada Peserta Didik Baru

Nur Aeni Widiastuti
Maulana Azhar
Harminto Mulyo

Abstract


Majoring students is a process of placing students into certain majors in accordance with their interests and academic abilities in an effort to make it easier for students in the learning process. Madrasah Aliyah Darul Hikmah Menganti is a school equivalent to SMA, which has two majors, namely science and social studies. The difficulty of classifying the majors of new students is an obstacle for the school. Because the criteria assessment process is carried out one by one. From these problems, the K-Nearest Neighbor (K-NN) method was applied to classify majors in order to simplify and minimize errors in the process of determining new student majors. The data initially amounted to 638 records and 31 attributes. After preprocessing, the data used amounted to 635 records with 12 attributes, namely name, gender, major interest, school origin, children to, number of siblings, math scores, English grades, science grades, Indonesian language scores, test scores, and major recommendations. After testing using K-Fold Cross Validation and Confusion Matrix for evaluation and validation of results by calculating the Euclidean Distance distance, the best k value (optimal) k=3 which produces accuracy: 97.11%, precision: 96.82%, recall: 98.33%, and AUC: 0.951.

Keywords


classification; majoring students; k-nearest neighbor; euclidean distance

Teks Lengkap:

PDF

Referensi


Nikmatun IA, Waspada I. Implementasi Data Data Mining Untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor. Jurnal SIMETRIS. 2019;10(2):421–32. 2. Mafakhir AZ, Solichin A. Penerapan Metode Naïve Bayes Classifier Untuk Penjurusan Siswa Pada Madrasah Aliyah Al-Falah Jakarta. Fountain of Informatics Journal. 2020 Apr 29;5(1):21. 3. Riyanah N, Informasi S, Tinggi S, Informatika M, Komputer D, Mandiri N. Penerapan Algoritma Naive Bayes Untuk Klasifikasi Penerima Bantuan Surat Keterangan Tidak Mampu. JTIM : Jurnal Teknologi Informasi dan Multimedia. 2021;2(4):206–13. 4. Monalisa S, Hadi F. Penerapan Algoritma CART Dalam Menentukan Jurusan Siswa di MAN 1 Inhil. Jurnal Sisfokom (Sistem Informasi dan Komputer). 2020 Oct 27;9(3):387–94. 5. Sambani EB, Nuraeni F. Penerapan Algoritma C4.5 Untuk Klasifikasi Pola Penjurusan di Sekolah Menengah Kejuruan (SMK) Kota Tasikmalaya. CSRID Journal [Internet]. 2017;9(3):149–57. Available from: https://www.doi.org/10.22303/csrid.9.3.2017.149-157 6. Fibo M, Ikhbal D, Kurniadi D. Menentukan Penjurusan Siswa Dengan Menggunakan Metode Decision Tree Algoritma C4.5 (Studi Kasus : SMA Negeri 2 Padang). Jurnal Vokasi Informatika [Internet]. 2021;1(3):31–7. Available from: http://javit.ppj.unp.ac.id 7. Prabowo IM, Subiyantto S. Sistem Rekomendasi Penjurusan Sekolah Menengah Kejuruan Dengan Algoritma C4.5. Jurnal Kependidikan. 2017;1(1):139–49. 8. Mustakim M, Ulya R, Putri SA. Pemodelan Modified K-Nearest Neighbor Dalam Klasifikasi Jurusan Siswa di SMAN 6 Pekanbaru. In: UIN Sultan Syarif Kasim Riau ISSN. 2021. p. 2579–5406. 9. Lestari PI, Andriansyah M. Analisis K-Nearest NeighborBerdasarkanForward SelectionUntuk Prediksi Status Mahasiswa Non Aktif Pada STMIK Bani Saleh. Jurnal Informatika: Jurnal pengembangan IT (JPIT) [Internet]. 2021;6(3):181–6. Available from: http://pddiktiadmin.kemdikbud.go.id/admin/kemahasiswaan/d 10. Habibi AM, Santika RR. Implementasi Algoritma K-Nearest Neighbor dalam Menentukan Jurusan Menggunakan Metode Euclidean Distance Berbasis Web Pada SMP Setia Gama. Jurnal SKANIKA. 2020;3(4):7–14. 11. Mafakhir AZ, Solichin A. Penerapan Metode Naïve Bayes Classifier Untuk Penjurusan Siswa Pada Madrasah Aliyah Al-Falah Jakarta. Fountain of Informatics Journal. 2020 Apr 29;5(1):21.




DOI: https://doi.org/10.24176/simet.v14i2.10092

Article Metrics

Abstract views : 307| PDF views : 273

Refbacks

  • Saat ini tidak ada refbacks.


free hit counter View My Stats

Indexed by:

Dimensions logo

 

Flag Counter

Creative Commons License
Simetris : Jurnal Teknik Mesin, Elektro dan Ilmu Komputer is licensed under a Creative Commons Attribution 4.0 International License.

Dedicated to: