ESTIMASI BEBAN PENDINGIN UNTUK GEDUNG HEMAT ENERGI MENGGUNAKAN JARINGAN SARAF TIRUAN

Meredita Susanty
Muhammad Redho Darmawan
Fitri Karimah
Ade Irawan

Abstract


Untuk mencapai target konservasi energi sebesar 17% di tahun 2025 pemerintah menerapkan aturan management energi bagi industri/penguna energi lebih besar sama dengan 6000 TOE. Di sektor bangunan gedung di Indonesia, konsumsi energi terbesar adalah penggunaan pendingin udara. Salah satu cara untuk melakukan penghematan dalam tata udara dengan menggunakan perangkat yang hemat listrik tanpa mengorbankan kenyamanan penghuni gedung. Penelitian ini menggunakan metode jaringan saraf tiruan untuk memprediksi beban pendingin optimum untuk suatu gedung berdasarkan 8 karakteristik bangunan. Model yang dibuat memberikan hasil yang baik dengan nilai nilai loss 0,4-1,1%

Keywords


deep learning;jaringan syaraf tiruan;konservasi energi;gedung ramah lingkungan

Teks Lengkap:

PDF

Referensi


“Para Pengelola Gedung Didorong Lakukan Efisiensi Energi - Nasional Tempo.co,” 2019. [Online]. Available: https://nasional.tempo.co/read/1200821/para-pengelola-gedung-didorong-lakukan-efisiensi-energi. [Accessed: 15-May-2020].

Indonesian Government, “Indonesian Government Law No 79 In 2014 About National Energy Policy,” p. 8, 2014.

Ministry of Energy and Mineral Resources, “Presidential Regulation Number 22 of 2017 on the General Planning for National Energy (RUEN).” 2017.

“Pekerjaan Rumah Pemerintah Untuk Akselerasi Penerapan Konservasi Energi di Indonesia - ICEL,” 2019. [Online]. Available: https://icel.or.id/isu/pekerjaan-rumah-pemerintah-untuk-akselerasi-penerapan-konservasi-energi-di-indonesia/. [Accessed: 31-May-2020].

“Konservasi Energi Nasional Baru Mencapai 9% - Dunia Energi,” 2019. [Online]. Available: https://www.dunia-energi.com/konservasi-energi-nasional-baru-mencapai-9/. [Accessed: 31-May-2020].

Direktorat Konservasi Energi Kementerian ESDM, “Data & Informasi - Konservasi Energi 2018,” p. 61, 2019.

M. K. Alfarizi and E. Prima, “Studi: Bangunan Gedung Hijau Hemat 30-80 Persen Biaya - Tekno Tempo.co,” 21-Feb-2019. [Online]. Available: https://tekno.tempo.co/read/1177826/studi-bangunan-gedung-hijau-hemat-30-80-persen-biaya/full&view=ok. [Accessed: 15-May-2020].

“User Guide For Commercial Sector.” Indonesian Institute for Energy Economics, 2014.

A. Yezioro, B. Dong, and F. Leite, “An applied artificial intelligence approach towards assessing building performance simulation tools,” Energy Build., vol. 40, no. 4, pp. 612–620, Jan. 2008.

D. B. Crawley, J. W. Hand, M. Kummert, and B. T. Griffith, “Contrasting the capabilities of building energy performance simulation programs,” Build. Environ., vol. 43, no. 4, pp. 661–673, Apr. 2008.

B. Dong, C. Cao, and S. E. Lee, “Applying support vector machines to predict building energy consumption in tropical region,” Energy Build., vol. 37, no. 5, pp. 545–553, May 2005.

Q. Li, Q. Meng, J. Cai, H. Yoshino, and A. Mochida, “Applying support vector machine to predict hourly cooling load in the building,” Appl. Energy, vol. 86, no. 10, pp. 2249–2256, Oct. 2009.

T. Catalina, J. Virgone, and E. Blanco, “Development and validation of regression models to predict monthly heating demand for residential buildings,” Energy Build., vol. 40, no. 10, pp. 1825–1832, Jan. 2008.

J. Zhang and F. Haghighat, “Development of Artificial Neural Network based heat convection algorithm for thermal simulation of large rectangular cross-sectional area Earth-to-Air Heat Exchangers,” Energy Build., vol. 42, no. 4, pp. 435–440, Apr. 2010.

W. Pessenlehner and A. Mahdavi, “Building Morphology, Transparence, and Energy Performance,” in Eight International IBPSA Conference, 2003.

M. Kamber, Data Mining : Concepts and Techniques, Second. Elsevier, 2016.

C. Xiao, J. Ye, R. M. Esteves, and C. Rong, “Using Spearman’s correlation coefficients for exploratory data analysis on big dataset,” Concurr. Comput. Pract. Exp., vol. 28, no. 14, pp. 3866–3878, Sep. 2016.

S. Sharma, “Activation Functions in Neural Networks - Towards Data Science,” 2017. [Online]. Available: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6. [Accessed: 05-Jun-2020].

L. Anastasia Kyrykovych, “Deep Neural Networks.” [Online]. Available: https://www.kdnuggets.com/2020/02/deep-neural-networks.html. [Accessed: 05-Jun-2020].

C. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Clim. Res., vol. 30, pp. 79–82, Dec. 2005.

A. Xifara and A. Tsanas, “UCI Machine Learning Repository: Energy efficiency Data Set.” [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Energy+efficiency. [Accessed: 04-Jun-2020].




DOI: https://doi.org/10.24176/simet.v11i2.4859

Article Metrics

Abstract views : 161| PDF views : 112

Refbacks

  • Saat ini tidak ada refbacks.


free hit counter View My Stats

Indexed by:

 

Flag Counter

Creative Commons License
Simetris : Jurnal Teknik Mesin, Elektro dan Ilmu Komputer is licensed under a Creative Commons Attribution 4.0 International License.

Dedicated to: