SIMULASI ALIRAN DUA FASA STRATIFIED AIR - UDARA PADA PIPA HORIZONTAL DENGAN PENDEKATAN VOLUME OF FLUID (VOF)

Ainul Yaqin, Akhmad Zidni Hudaya, Rianto Wibowo

Sari


The flow conditions inside a pipe can involve two different densities or commonly known as two-phase flow. Besides density differences, fluctuations also affect the flow patterns of two-phase flow. These fluctuations result in various flow patterns, including the stratified flow pattern often utilized in fluid industries and the slugging flow pattern, which is generally avoided. Therefore, understanding the characteristics of these flow patterns is crucial, and Computational Fluid Dynamics (CFD) simulation methods are employed for this purpose. In the simulation model used, Volume Of Fluid (VOF) is employed with turbulent k-ε flow in a 19 mm diameter, 9 m long T-shaped pipe with a separating plate between the inlet of water and air. This setup yields various flow patterns such as Stratified ripple, Stratified wave, roll wave, and pseudo slug. At low pressure differences and velocities of JL = 0.025 m/s and JG = 1.88 m/s, a smooth stratified interface profile is observed, clearly separating the phases of water flowing continuously at the bottom and gas flowing at the top due to density differences, without any waves. As the velocities are increased to JL = 0.040 m/s and JG = 5.246 m/s, a ripple wave flow pattern occurs, characterized by small waves accompanied by long waves. Furthermore, increasing JL while decreasing JG to JL = 0.050 m/s and JG = 4.140 m/s leads to the formation of a stratified roll flow pattern, marked by long rolls, while pseudo slug flow occurs at JG = 5.246 m/s and JL = 0.076 m/s. This happens due to the increased velocity of the water phase causing the gas phase to become unstable, forming bubbles within the liquid

Kata Kunci


Two-Phase Flow; Computational Fluid Dynamic Volume Of Fluid; Stratified

Teks Lengkap:

PDF

Referensi


Akhlaghi, M., Mohammadi, V., Nouri, N. M., Taherkhani, M., & Karimi, M. (2019). Multi-Fluid VoF model assessment to simulate the horizontal air–water intermittent flow. Chemical Engineering Research and Design, 152, 48–59.

Bhaskara, V. S., & Bhattacharyya, D. (2018). Emulating malware authors for proactive protection using GANs over a distributed image visualization of dynamic file behavior.

Deendarlianto, Andrianto, M., Widyaparaga, A., Dinaryanto, O., Khasani, & Indarto. (2016). CFD Studies on the gas-liquid plug two-phase flow in a horizontal pipe. Journal of Petroleum Science and Engineering, 147(2), 779–787.

Dinaryanto, O. (2018). Studi Eksperimen Mengenai Mekanisme Aliran Slug Pada Aliran Dua Fasa Adiabatis Searah Dalam Pipa Horizontal. 132.

Hanif, muhammad abimayyu, & Widyaparaga, A. (2018). Studi Eksperimen Perubahan Frekuensi Aliran Dua Fasa Campuran Air-Minyak Tanah Dengan Pola Stratified Wavy Pada Pipa Horizontal Llcc Dan Pengaruhnya Terhadap Panjang Pipa Menggunakan Metode Image Processing. Jurnal Inovasi Mesin, 2019.

Hudaya, A. Z., Widyatama, A., Dinaryanto, O., Juwana, W. E., Indarto, & Deendarlianto. (2019). The liquid wave characteristics during the transportation of air-water stratified co-current two-phase flow in a horizontal pipe. Experimental Thermal and Fluid Science, 103(July 2018), 304–317.

Korawan, A. D. (2015). Pola Aliran Dua Fase (Air+Udara) Pada Pipa Horisontal Dengan Variasi Kecepatan Superfisial Air. Mekanika, 14(1), 57–63.

Mahadiputra, A. A., Karnowo, K., & Anis, S. (2019). Studi Eksperimental Pengaruh Kecepatan Superfisial Aliran Searah Terhadap Karakteristik Dan Parameter Aliran Stratified Pada Pipa Horizontal. Jurnal Inovasi Mesin, 1(2), 1–10.

Mahmuddin, Iswansyah, & Habiba, M. S. (2023). Analisis Pola Aliran dan Perubahan Beda Tekanan pada Aliran Dua Fase Searah dalam Pipa Horisontal. Jurnal Mekanova : Mekanikal, Inovasi Dan Teknologi, 9(2), 155–161.

Mazumder, Q. H. (2012). CFD analysis of the effect of elbow radius on pressure drop in multiphase flow. Modelling and Simulation in Engineering, 2012.

Shi, J., Gourma, M., & Yeung, H. (2017). CFD simulation of horizontal oil-water flow with matched density and medium viscosity ratio in different flow regimes. Journal of Petroleum Science and Engineering, 151, 373–383.

Sugianto, Dewi Puspitasari, Indarto, & Khasani. (2018). Simulasi Numerik Pemisahan Aliran Dua Fase Liquid-Liquid di Dalam Tjunction. 2, 32.

Sukamta, S., Thoharudin, T., & Melianto Nugroho, D. (2018). Simulasi CFD Aliran Stratified Air-Udara pada Pipa Horisontal. Semesta Teknika, 21(2), 206–215.

Wibowo, R., Hudaya, A. Z., & Kabib, M. (2015). Studi Eksperimen Mengenai Sub-Sub Pola Aliran Stratified Pada Aliran Dua Fasa Searah Berdasar Fluktuasi Beda Tekanan Pada Pipa Horisontal. Simetris : Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 6(2), 385.

Wijayanta, S., Deendarlianto, Indarto, Prasetyo, A., & Hudaya, A. Z. (2023). The effect of the liquid physical properties on the wave frequency and wave velocity of co-current gas-liquid stratified two-phase flow in a horizontal pipe. International Journal of Multiphase Flow, 158(2), 104300.




DOI: https://doi.org/10.24176/jointech.v5i1.13492

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Publisher: Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM), Universitas Muria Kudus
Jl. Lingkar Utara UMK, Gondangmanis, Bae, Kudus, 59327 - Central Java, Indonesia
Website: https://lppm.umk.ac.id