Analisis Nilai Sensor untuk Penilaian Kualitas Aroma Kopi Kolombia

Bayu Hananto, Ridwan Raafi’udin, Didit Widiyanto

Sari


Penilaian kualitas aroma kopi merupakan aspek krusial dalam industri kopi, terutama untuk produk-produk premium seperti kopi Kolombia. Studi ini bertujuan untuk analisis nilai sensor menggunakan electronic nose dalam mengkategorikan kualitas aroma kopi Kolombia berdasarkan tiga kategori: kualitas tinggi (HQ_Coffee), kualitas sedang (AQ_Coffee), dan kualitas rendah (LQ_Coffee). Metode yang digunakan melibatkan pengambilan data aroma kopi menggunakan electronic nose dengan berbagai jenis sensor, termasuk SP-12A, SP-31, TGS-813, TGS-842, SP-AQ3, TGS-823, ST-31, dan TGS-800, yang masing-masing menunjukkan karakteristik respons yang berbeda. Hasil studi menunjukkan bahwa sensor SP-31 memiliki sensitivitas tertinggi terhadap aroma kopi di semua kategori, menjadikannya sensor yang paling andal untuk deteksi kualitas aroma. Sensor TGS-842 menunjukkan fleksibilitas dengan rentang respons yang luas, sementara sensor SP-AQ3 memiliki sensitivitas terendah, yang mungkin membatasi efektivitasnya dalam mendeteksi variasi aroma yang kompleks. Kesimpulannya, penggunaan kombinasi sensor dalam electronic nose dapat menghasilkan penilaian kualitas aroma kopi yang lebih cepat, konsisten, dan objektif dibandingkan dengan metode manual.

Kata Kunci


aroma; analisis; electonic nose; kolombia; kopi; sensor

Teks Lengkap:

PDF

Referensi


Barron, D., Pineau, N., Matthey-Doret, W., Ali, S., Sudre, J., Germain, J. C., Kolodziejczyk, E., Pollien, P., Labbe, D., Jarisch, C., Dugas, V., Hartmann, C., & Folmer, B. (2012). Impact of crema on the aroma release and the in-mouth sensory perception of espresso coffee. Food and Function, 3(9), 923–930. https://doi.org/10.1039/c2fo30046j Crnjar, R., Solari, P., & Sollai, G. (2023). The Human Nose as a Chemical Sensor in the Perception of Coffee Aroma: Individual Variability. Chemosensors, 11(4), 248. https://doi.org/10.3390/chemosensors11040248 DATA: 10 Negara Penghasil Kopi Terbesar di Dunia. (2024). Bumibogalaksmi.Com. https://www.inilah.com/negara-penghasil-kopi-terbesar-di-dunia Gamboa, J. C. R., & Acevedo, C. M. D. (2020). Dataset: Electronic Nose for Quality Control of Colombian Coffee through the Detection of Defects in “Cup Tests.” https://doi.org/10.17632/7spd6fpvyk.1 Gancarz, M., Dobrzański, B., Malaga-Toboła, U., Tabor, S., Combrzyński, M., Ćwikła, D., Strobel, W. R., Oniszczuk, A., Karami, H., Darvishi, Y., Żytek, A., & Rusinek, R. (2022). Impact of Coffee Bean Roasting on the Content of Pyridines Determined by Analysis of Volatile Organic Compounds. Molecules, 27(5), 1559. https://doi.org/10.3390/molecules27051559 Gancarz, M., Nawrocka, A., & Rusinek, R. (2019). Identification of Volatile Organic Compounds and Their Concentrations Using a Novel Method Analysis of MOS Sensors Signal. Journal of Food Science, 84(8), 2077–2085. https://doi.org/10.1111/1750-3841.14701 Gonzalez Viejo, C., Tongson, E., & Fuentes, S. (2021). Integrating a low‐cost electronic nose and machine learning modelling to assess coffee aroma profile and intensity. Sensors, 21(6), 1–16. https://doi.org/10.3390/s21062016 Harsono, W., Sarno, R., & Sabilla, S. I. (2020). Recognition of original arabica civet coffee based on odor using electronic nose and machine learning. In Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, iSemantic 2020 (pp. 333–339). https://doi.org/10.1109/iSemantic50169.2020.9234234 Knysak, D. (2017). Volatile compounds profiles in unroasted Coffea arabica and Coffea canephora beans from different countries. Food Science and Technology (Brazil), 37(3), 444–448. https://doi.org/10.1590/1678-457x.19216 Lu, T., Sun, Y., Huang, Y., & Chen, X. (2023). Effects of roasting on the chemical compositions, color, aroma, microstructure, and the kinetics of changes in coffee pulp. Journal of Food Science, 88(4), 1430–1444. https://doi.org/10.1111/1750-3841.16516 Mesías, M., Barea-Ramos, J. D., Lozano, J., Morales, F. J., & Martín-Vertedor, D. (2023). Application of an Electronic Nose Technology for the Prediction of Chemical Process Contaminants in Roasted Almonds. Chemosensors, 11(5). https://doi.org/10.3390/chemosensors11050287 Palacín, J., Rubies, E., & Clotet, E. (2022). Application of a Single-Type eNose to Discriminate the Brewed Aroma of One Caffeinated and Decaffeinated Encapsulated Espresso Coffee Type. Chemosensors, 10(10), 421. https://doi.org/10.3390/chemosensors10100421 Rodríguez, J., Durán, C., & Reyes, A. (2010). Electronic nose for quality control of Colombian coffee through the detection of defects in “Cup Tests.” Sensors. https://doi.org/10.3390/s100100036 Rusinek, R., Siger, A., Gawrysiak-Witulska, M., Rokosik, E., Malaga-Toboła, U., & Gancarz, M. (2020). Application of an electronic nose for determination of pre-pressing treatment of rapeseed based on the analysis of volatile compounds contained in pressed oil. International Journal of Food Science and Technology, 55(5), 2161–2170. https://doi.org/10.1111/ijfs.14392 Suslick, B. A., Feng, L., & Suslick, K. S. (2010). Discrimination of complex mixtures by a colorimetric sensor array: Coffee aromas. Analytical Chemistry, 82(5), 2067–2073. https://doi.org/10.1021/ac902823w Tian, H., Li, F., Qin, L., Yu, H., & Ma, X. (2014). Discrimination of chicken seasonings and beef seasonings using electronic nose and sensory evaluation. Journal of Food Science, 79(11), S2346–S2353. https://doi.org/10.1111/1750-3841.12675 Zhang, D., Ji, H. W., Luo, G. X., Chen, H., Liu, S. C., & Mao, W. J. (2022). Insight into aroma attributes change during the hot-air-drying process of white shrimp using GC-MS, E-Nose and sensory analysis. Food Science and Technology (Brazil), 42. https://doi.org/10.1590/fst.70820 Zou, Y., Gaida, M., Franchina, F. A., Stefanuto, P. H., & Focant, J. F. (2022). Distinguishing between Decaffeinated and Regular Coffee by HS-SPME-GC×GC-TOFMS, Chemometrics, and Machine Learning. Molecules, 27(6), 1806. https://doi.org/10.3390/molecules27061806




DOI: https://doi.org/10.24176/simet.v16i1.13989

Refbacks

  • Saat ini tidak ada refbacks.


View My Stats

Indexed by:

Dimensions logo

 

Flag Counter

Creative Commons License
Simetris : Jurnal Teknik Mesin, Elektro dan Ilmu Komputer is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International.

Dedicated to: