SISTEM PENDINGIN PANEL SURYA OTOMATIS UNTUK MENGKATKAN DAYA KELUARAN PANEL SURYA

Riyani Prima Dewi

Abstract


Solar panels are the main component of solar power plant. In the Solar panels, conversion of solar energy into electrical energy are done. The results of the electrical energy produced by solar panels depend on the amount of solar intensity received by the solar panels. In addition, the working temperature of solar panels is also crucial. The ideal solar panel temperature is 25 C, which means that the solar panel will work optimally at that condition. When the temperature rises, the solar cell performance will decrease. This study aims to design a solar panel cooling system with active and passive methods using a way of flowing water over the surface of the solar panel and adding wet coconut coir on the back of the solar panel. The purpose of providing this treatment is to keep the surface temperature of the solar panel from overheating. This study uses a 100 WP solar panel and the results obtained that the average power generated is 69 W with an average voltage value of 15.47 V and an average current of 4.5 A. The performance 100 WP solar panels increased 24% of the reference solar panels being compared

Keywords


Cooling system;NodeMCU ESP8266;Solar Panel;Power

Teks Lengkap:

PDF

Referensi


K. ESDM, “Rencana Umum Energi Nasional (RUEN),” 2016. [2] Permen, Peraturan Menteri ESDM Nomor 49 Thn 2018 Tentang Penggunaan Sistem Pembangkit Listrik Tenaga Surya Atap oleh Konsumen PT. PLN (Persero). 2018. [3] P. Singh and N. M. Ravindra, “Temperature dependence of solar cell performance—an analysis,” Sol. Energy Mater. Sol. Cells, vol. 101, pp. 36–45, Jun. 2012, doi: 10.1016/j.solmat.2012.02.019. [4] M. Chegaar, A. Hamzaoui, A. Namoda, P. Petit, M. Aillerie, and A. Herguth, “Effect of Illumination Intensity on Solar Cells Parameters,” Energy Procedia, vol. 36, pp. 722–729, 2013, doi: 10.1016/j.egypro.2013.07.084. [5] M. R. Gomaa, W. Hammad, M. Al-Dhaifallah, and H. Rezk, “Performance enhancement of grid-tied PV system through proposed design cooling techniques: An experimental study and comparative analysis,” Sol. Energy, vol. 211, pp. 1110–1127, Nov. 2020, doi: 10.1016/j.solener.2020.10.062. [6] Afriandi, I. Yusuf, and A. Hiendro, “Implementasi Water Cooling System Untuk Menurunkan Temperature Losses Pada Panel Surya,” J. Tek. Elektro Univ. Tanjungpura, vol. 1, no. 2, pp. 3–5, 2017, [Online]. Available: https://jurnal.untan.ac.id/index.php/jteuntan/article/view/21994%0Ahttp://jurnal.untan.ac.id/index.php/jteuntan/article/view/21994/17633. [7] L. Idoko, O. Anaya-Lara, and A. McDonald, “Enhancing PV modules efficiency and power output using multi-concept cooling technique,” Energy Reports, vol. 4, pp. 357–369, 2018, doi: 10.1016/j.egyr.2018.05.004. [8] P. K. Tiyas and M. Widyantoro, “PENGARUH EFEK SUHU TERHADAP KINERJA PANEL SURYA,” J. Tek. Elektro, vol. 9, no. 1, pp. 1–6, 2020. [9] S. A. Zubeer and O. M. Ali, “Performance analysis and electrical production of photovoltaic modules using active cooling system and reflectors,” Ain Shams Eng. J., vol. 12, no. 2, pp. 2009–2016, 2021, doi: 10.1016/j.asej.2020.09.022. [10] F. Grubišić‐Čabo, S. Nižetić, I. Marinić Kragić, and D. Čoko, “Further progress in the research of fin‐based passive cooling technique for the free‐standing silicon photovoltaic panels,” Int. J. Energy Res., vol. 43, no. 8, pp. 3475–3495, Jun. 2019, doi: 10.1002/er.4489. [11] S. Nižetić, E. Giama, and A. M. Papadopoulos, “Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques,” Energy Convers. Manag., vol. 155, pp. 301–323, Jan. 2018, doi: 10.1016/j.enconman.2017.10.071. [12] M. W. Tian et al., “Energy, exergy and economics study of a solar/thermal panel cooled by nanofluid,” Case Stud. Therm. Eng., vol. 28, p. 101481, 2021, doi: 10.1016/j.csite.2021.101481. [13] M. R. Gomaa, M. Ahmed, and H. Rezk, “Temperature distribution modeling of PV and cooling water PV/T collectors through thin and thick cooling cross-fined channel box,” Energy Reports, vol. 8, pp. 1144–1153, 2022, doi: 10.1016/j.egyr.2021.11.061. [14] B. Ramadhan, Monitoring Pompa Air Tenaga Surya. Tugas Akhir. Jurusan Teknik Elektronika, Politeknik Negeri Cilacap, 2022.




DOI: https://doi.org/10.24176/simet.v14i1.8901

Article Metrics

Abstract views : 296| PDF views : 83

Refbacks

  • Saat ini tidak ada refbacks.


free hit counter View My Stats

Indexed by:

Dimensions logo

 

Flag Counter

Creative Commons License
Simetris : Jurnal Teknik Mesin, Elektro dan Ilmu Komputer is licensed under a Creative Commons Attribution 4.0 International License.

Dedicated to: