Generation Z Cashless Preferences In The Post Covid-19 Pandemic Era: Identifying The Continuity Of Digital Payment Usage

Erlinda Sholihah
Diyah Ariyani

Abstract


This quantitative study aims to identify factors affecting the intention of continuity of digital payment use in Generation Z in the post-Covid-19 pandemic. Based on the concepts of ECM (Expectation Confirmation Model) and TAM (Technology Acceptance Model), perceived ease of use, usefulness, and satisfaction were selected as determining variables. Data were collected through questionnaires from 150 Generation Z respondents as digital payment users and tested based on the SEM-PLS technique using SmartPLS software version 4.0. This research has proven that perceived ease of use and satisfaction are the main factors for the continuance intention of digital payment use in Generation Z, especially in the post-Covid-19 pandemic. In contrast, perceived usefulness is not a significant predictor that affects the continuance intention of use. The results of this study are expected to contribute to the expansion of literacy and increase the development of digital payment systems to meet consumer needs in the current cashless era. Further research is needed in describing the continuance intention of digital payment use in Generation Z by adding more variables and increasing the sample to get better findings.


Keywords


Digital payment; ECM; TAM; Post Covid-19

Full Text:

PDF

References


Abdullah, F., & Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238–256. https://doi.org/10.1016/j.chb.2015.11.036 Abodunrin, O., Joshua, S., & Omole, F. (2017). Implication of Militancy on the Economic Development of Nigeria. Nigerian Journal of Management Research, 11(2), 1596–1907. Abodunrin, O., Oloye, G., & Adesola, B. (2020). Coronavirus Pandemic and Its Implication on Global Economy. International Journal of Arts, Languages and Business Studies (IJALBS), 4(March), 13–23. Agárdi, I., & Alt, M. A. (2022). Do digital natives use mobile payment differently than digital immigrants? A comparative study between generation X and Z. Electronic Commerce Research, 58–60. https://doi.org/10.1007/s10660-022-09537-9 Al-Hattami, H. M. (2021). Determinants of intention to continue usage of online shopping under a pandemic: COVID-19. Cogent Business and Management, 8(1). https://doi.org/10.1080/23311975.2021.1936368 Alshurideh, M., Al Kurdi, B., & Salloum, S. A. (2019). Examining the main mobile learning system drivers’ effects: A mix empirical examination of both the Expectation-Confirmation Model (ECM) and the Technology Acceptance Model (TAM). International Conference on Advanced Intelligent Systems and Informatics, 406–417. Amin, M. K., Azhar, A., Amin, A., & Akter, A. (2016). Applying the technology acceptance model in examining Bangladeshi consumers’ behavioral intention to use mobile wallet: PLS-SEM approach. 2015 18th International Conference on Computer and Information Technology, ICCIT 2015, December, 93–98. https://doi.org/10.1109/ICCITechn.2015.7488049 Aulia, S. (2020). Pola Perilaku Konsumen Digital Dalam Memanfaatkan Aplikasi Dompet Digital. Jurnal Komunikasi, 12(2), 311. https://doi.org/10.24912/jk.v12i2.9829 Azizah, S., Bintoro, B. P. K., Octavyra, R. dinda, & Rachmat S, A. (2021). Determining Factors of Continuance Intention to Use QR Code Mobile Payment on Urban Millennials in Indonesia Empirical Study on Mobile Payment Funds. ADI Journal on Recent Innovation (AJRI), 3(2), 121–138. https://doi.org/10.34306/ajri.v3i2.562 Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly: Management Information Systems, 25(3), 351–370. https://doi.org/10.2307/3250921 Carlos Tam, T. O. (2018). Literature review of mobile banking and individual performance. International Journal of Bank Marketing, 36, 230–255. Casaló, L. V., Flavián, C., & Guinalíu, M. (2007). The role of security, privacy, usability and reputation in the development of online banking. Online Information Review, 31(5), 583–603. https://doi.org/10.1108/14684520710832315 Chaveesuk, S., Khalid, B., & Chaiyasoonthorn, W. (2022). Continuance intention to use digital payments in mitigating the spread of COVID-19 virus. International Journal of Data and Network Science, 6(2), 527–536. https://doi.org/10.5267/j.ijdns.2021.12.001 Chiu, W., Cho, H., & Chi, C. G. (2020). Consumers’ continuance intention to use fitness and health apps: an integration of the expectation–confirmation model and investment model. Information Technology and People, 34(3), 978–998. https://doi.org/10.1108/ITP-09-2019-0463 Chuang, L.-M., Liu, C.-C., & Kao, H.-K. (2016). International Journal of Management and Administrative Sciences (IJMAS) The Adoption of Fintech Service: TAM perspective. International Journal of Management and Administrative Sciences (IJMAS, 3(07), 1–15. www.ijmas.orgwww.ijmas.org Dai, H. M., Teo, T., Rappa, N. A., & Huang, F. (2020). Explaining Chinese university students’ continuance learning intention in the MOOC setting: A modified expectation confirmation model perspective. Computers and Education, 150(January). https://doi.org/10.1016/j.compedu.2020.103850 Daragmeh, A., Lentner, C., & Sági, J. (2021). FinTech payments in the era of COVID-19: Factors influencing behavioral intentions of “Generation X” in Hungary to use mobile payment. Journal of Behavioral and Experimental Finance, 32, 100574. https://doi.org/10.1016/j.jbef.2021.100574 Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319–340. https://doi.org/https://doi.org/10.2307/249008 Davis, F. D. (2011). Perceived Usefullnes, Perceived Ease to Use, and user Acceptance of Information Technology. Management Information Systems Research Center, 13(3), 319–340. https://doi.org/10.5962/bhl.title.33621 Dospinescu, O., Dospinescu, N., & Agheorghiesei, D. T. (2021). Fintech services and factors determining the expected benefits of users: Evidence in romania for millennials and generation Z. E a M: Ekonomie a Management, 24(2), 101–118. https://doi.org/10.15240/tul/001/2021-2-007 Fulshah, C., Muhamad, A., Ricardo, I., Andhika, W., & Freddy, W. (2022). Building Customer Loyalty In Digital Transaction Using QR Code: Quick Response Code Indonesian Standard (QRIS). Journal of Distribution Science, 20(1), 1–11. Gupta, A., Yousaf, A., & Mishra, A. (2020). How pre-adoption expectancies shape post-adoption continuance intentions: An extended expectation-confirmation model. International Journal of Information Management, 52(April 2019), 102094. https://doi.org/10.1016/j.ijinfomgt.2020.102094 Gupta, K., & Arora, N. (2020). Investigating consumer intention to accept mobile payment systems through unified theory of acceptance model: An Indian perspective. South Asian Journal of Business Studies, 9(1), 88–114. https://doi.org/10.1108/SAJBS-03-2019-0037 Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). SAGE Publications. Halim, E., Chandra, A. N., Salim, J., Margarita, V., Destiano, R., & Hebrard, M. (2021). Predicting the determinants of continuance intention to use e-wallet in indonesia post-covid-19 pandemic. 2021 International Conference on Information Management and Technology (ICIMTech), 1, 545–550. Hanafizadeh, P., Behboudi, M., Abedini Koshksaray, A., & Jalilvand Shirkhani Tabar, M. (2014). Mobile-banking adoption by Iranian bank clients. Telematics and Informatics, 31(1), 62–78. https://doi.org/10.1016/j.tele.2012.11.001 Harb, Y., & Alhayajneh, S. (2019). Intention to use BI tools: Integrating technology acceptance model (TAM) and personality trait model. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology, JEEIT 2019 - Proceedings, 494–497. https://doi.org/10.1109/JEEIT.2019.8717407 Hu, Z., Ding, S., Li, S., Chen, L., & Yang, S. (2019). Adoption intention of fintech services for bank users: An empirical examination with an extended technology acceptance model. Symmetry, 11(3). https://doi.org/10.3390/sym11030340 Ibrahim, Y., & Hidayat-Ur-Rehman, I. (2021). COVID-19 crisis and the continuous use of virtual classes. International Journal of Advanced and Applied Sciences, 8(4), 117–129. https://doi.org/10.21833/ijaas.2021.04.014 Imam Ghozali. (2014). Structural Equation Modeling: Metode Alternatif dengan Partial Least Squares (PLS). Universitas Diponogoro. Ispriandina, A., & Sutisna, M. (2019). Faktor-Faktor Penerimaan Teknologi Yang Memengaruhi Intensi Kontinuitas Penggunaan Mobile Wallet Di Kota Bandung. Prosiding Industrial Research Workshop and National Seminar, 10(1), 1046–1055. Jumaan, I. A., Hashim, N. H., & Al-Ghazali, B. M. (2020). The role of cognitive absorption in predicting mobile internet users’ continuance intention: An extension of the expectation-confirmation model. Technology in Society, 63(October 2019), 101355. https://doi.org/10.1016/j.techsoc.2020.101355 Karim, M. W., Haque, A., Ulfy, M. A., Hossain, M. A., & Anis, M. Z. (2020). Factors influencing the use of E-wallet as a payment method among Malaysian young adults. Journal of International Business and Management, 3(2), 1–12. Keng-Soon, C., Choo Yen-San, W., Pui-Yee, Y., Hong-Leong, C., & Teh Shwu-Shing, J. (2019). an Adoption of Fintech Service in Malaysia. South East Asia Journal of Contemporary Business, Economics and Law, 18(5), 134–147. Kirmani, M. D., Haque, M. A., Sadiq, M. A., & Hasan, F. (2022). Cashless preferences during the COVID-19 pandemic: investigating user intentions to continue UPI-based payment systems in India. Journal of Science and Technology Policy Management. https://doi.org/10.1108/JSTPM-08-2021-0127 Kristina, N., & Harris, I. (2020). The Technology Acceptance Model of Mobile Payment Usage on Generation Z. Binus Business Review, 11(3), 149–156. https://doi.org/10.21512/bbr.v11i3.6394 Le, V. P., Do, S. H., & Nguyen, H. N. L. (2022). A Study on the Factors Affecting Intention of Using Online Banking Services in Vietnam. In Global Changes and Sustainable Development in Asian Emerging Market Economies Vol. 1 (pp. 179–198). Springer. Lestari, D. (2019). Measuring e-commerce adoption behaviour among gen-Z in Jakarta, Indonesia. Economic Analysis and Policy, 64, 103–115. https://doi.org/10.1016/j.eap.2019.08.004 Liu, T. L., Lin, T. T., & Hsu, S. Y. (2022). Continuance Usage Intention toward E-Payment during the COVID-19 Pandemic from the Financial Sustainable Development Perspective Using Perceived Usefulness and Electronic Word of Mouth as Mediators. Sustainability (Switzerland), 14(13). https://doi.org/10.3390/su14137775 Mayasari, M., Rizka, A., & Helya, F. (2022). Kajian Literatur Cashless Payment dan Desain Sistem Informasi Satu Code untuk Semua Pembayaran. Jurnal Akuntansi, Ekonomi Dan Manajemen Bisnis, 10(1), 1–14. McCrindle, M., & Fell, A. (2019). Understanding Generation Z: Recruiting, training and leading the next generation. McCrindle Research Pty Ltd. Mehrad, D., & Mohammadi, S. (2017). Word of Mouth impact on the adoption of mobile banking in Iran. Telematics and Informatics, 34(7), 1351–1363. https://doi.org/10.1016/j.tele.2016.08.009 Michael MUSYAFFI, A., Agustin Pratama SARI, D., & Kismayanti RESPATI, D. (2021). Understanding of Digital Payment Usage During COVID-19 Pandemic: A Study of UTAUT Extension Model in Indonesia. The Journal of Asian Finance, Economics and Business, 8(6), 475–482. https://doi.org/10.13106/jafeb.2021.vol8.no6.0475 Mohd Amir, R. I., Mohd, I. H., Saad, S., Abu Seman, S. A., & Tuan Besar, T. B. H. (2020). Perceived Ease of Use, Perceived Usefulness, and Behavioral Intention: The Acceptance of Crowdsourcing Platform by Using Technology Acceptance Model (TAM). Charting a Sustainable Future of ASEAN in Business and Social Sciences, 403–410. https://doi.org/10.1007/978-981-15-3859-9_34 Muñoz-Leiva, F., Climent-Climent, S., & Liébana-Cabanillas, F. (2017). Determinantes de la intención de uso de las aplicaciones de banca para móviles: una extensión del modelo TAM clásico. Spanish Journal of Marketing - ESIC, 21(1), 25–38. https://doi.org/10.1016/j.sjme.2016.12.001 Nikou, S. A. (2021). Web-based videoconferencing for teaching online: Continuance intention to use in the post-COVID-19 period. Interaction Design and Architecture(S), 47, 123–143. Park, E. (2020). User acceptance of smart wearable devices: An expectation-confirmation model approach. Telematics and Informatics, 47(September 2019). https://doi.org/10.1016/j.tele.2019.101318 Patel, K. J., & Patel, H. J. (2018). Adoption of internet banking services in Gujarat: An extension of TAM with perceived security and social influence. International Journal of Bank Marketing, 36(1), 147–169. https://doi.org/10.1108/IJBM-08-2016-0104 Poerjoto, J. I., Gui, A., & Deniswara, K. (2021). Identifying Factors Affecting the Continuance Usage Intention of Digital Payment Services among Millennials in Jakarta. 2021 25th International Conference on Information Technology, IT 2021, February, 20–23. https://doi.org/10.1109/IT51528.2021.9390125 Priporas, C. V., Stylos, N., & Fotiadis, A. K. (2017). Generation Z consumers’ expectations of interactions in smart retailing: A future agenda. Computers in Human Behavior, 77, 374–381. https://doi.org/10.1016/j.chb.2017.01.058 Putritama, A. (2019). The Mobile Payment Fintech Continuance Usage Intention in Indonesia. Jurnal Economia, 15(2), 243–258. https://doi.org/10.21831/economia.v15i2.26403 Rabaa’i, A. A., & ALMaati, S. A. (2021). Exploring the Determinants of Users’ Continuance Intention to Use Mobile Banking Services in Kuwait: Extending the Expectation-Confirmation Model. Asia Pacific Journal of Information Systems, 31(2), 141–184. https://doi.org/10.14329/apjis.2021.31.2.141 Raharja, S. J., Sutarjo, Muhyi, H. A., & Herawaty, T. (2020). Digital Payment as an Enabler for Business Opportunities: A Go-Pay Case Study. Review of Integrative Business and Economics Research, 9(1), 319–329. http://buscompress.com/journal-home.html Rahi, S., Othman Mansour, M. M., Alharafsheh, M., & Alghizzawi, M. (2021). The post-adoption behavior of internet banking users through the eyes of self-determination theory and expectation confirmation model. Journal of Enterprise Information Management, 34(6), 1874–1892. https://doi.org/10.1108/JEIM-04-2020-0156 Rawashdeh, A. M., Elayan, M. B., Alhyasat, W., & Shamout, M. D. (2021). Electronic Human Resources Management Perceived Usefulness, Perceived Ease of Use and Continuance Usage Intention: the Mediating Role of User Satisfaction in Jordanian Hotels Sector. International Journal for Quality Research, 15(2), 679–696. https://doi.org/10.24874/IJQR15.02-20 Rohman, F. (2022, October). Mengenal 6 Dompet Digital Terbaik di Indonesia. Katadata.Co.Id. Saigal, K. (2020, October). Cashless after Covid-19. EUROMONEY. Santosa, A. D., Taufik, N., Prabowo, F. H. E., & Rahmawati, M. (2021). Continuance intention of baby boomer and X generation as new users of digital payment during COVID-19 pandemic using UTAUT2. Journal of Financial Services Marketing, 26(4), 259–273. https://doi.org/10.1057/s41264-021-00104-1 Sestri, E., Novida, I., & Husnayetti. (2020). Analisis Faktor Penentu Preferensi Masyarakat Milenial dalam Menggunakan Sistem Pembayaran Secara Cashless di Tangerang Selatan. Jurnal Ilmiah Teknologi & Informasi (Jutech), 1(1), 35. Shaikh, A. A., & Karjaluoto, H. (2015). Mobile banking adoption: A literature review. Telematics and Informatics, 32(1), 129–142. https://doi.org/10.1016/j.tele.2014.05.003 Sharma, S. K. (2019). Integrating cognitive antecedents into TAM to explain mobile banking behavioral intention: A SEM-neural network modeling. Information Systems Frontiers, 21(4), 815–827. https://doi.org/10.1007/s10796-017-9775-x Shemesh, T., & Barnoy, S. (2020). Assessment of the intention to use mobile health applications using a technology acceptance model in an israeli adult population. Telemedicine and E-Health, 26(9), 1141–1149. https://doi.org/10.1089/tmj.2019.0144 Singh, S., & Srivastava, R. K. (2020). Understanding the intention to use mobile banking by existing online banking customers: an empirical study. Journal of Financial Services Marketing, 25(3–4), 86–96. https://doi.org/10.1057/s41264-020-00074-w Siyal, A. W., Ding, D., & Siyal, S. (2019). M-banking barriers in Pakistan: a customer perspective of adoption and continuity intention. Data Technologies and Applications, 53(1), 58–84. https://doi.org/10.1108/DTA-04-2018-0022 Susanto, A., Chang, Y., & Ha, Y. (2016). Determinants of continuance intention to use the smartphone banking services: An extension to the expectation-confirmation model. Industrial Management and Data Systems, 116(3), 508–525. https://doi.org/10.1108/IMDS-05-2015-0195 Susanto, A., Lee, H., Zo, H., & Ciganek, A. P. (2013). Factors affecting Internet banking success: A comparative investigation between Indonesia and South Korea. Journal of Global Information Management, 21(2), 72–95. https://doi.org/10.4018/jgim.2013040104 Tam, C., Santos, D., & Oliveira, T. (2020). Exploring the influential factors of continuance intention to use mobile Apps: Extending the expectation confirmation model. Information Systems Frontiers, 22(1), 243–257. https://doi.org/10.1007/s10796-018-9864-5 To, A. T., & Trinh, T. H. M. (2021). Understanding behavioral intention to use mobile wallets in vietnam: Extending the tam model with trust and enjoyment. Cogent Business and Management, 8(1). https://doi.org/10.1080/23311975.2021.1891661 Vanduhe, V. Z., Nat, M., & Hasan, H. F. (2020). Continuance Intentions to Use Gamification for Training in Higher Education: Integrating the Technology Acceptance Model (TAM), Social Motivation, and Task Technology Fit (TTF). IEEE Access, 8, 21473–21484. https://doi.org/10.1109/ACCESS.2020.2966179 Venkatesh, V., & Davis, F. D. (2000). Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926 Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425–478. https://doi.org/https://doi.org/10.2307/30036540 Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly: Management Information Systems, 36(1), 157–178. https://doi.org/10.2307/41410412 Wang, T., Lin, C. L., & Su, Y. S. (2021). Continuance intention of university students and online learning during the covid-19 pandemic: A modified expectation confirmation model perspective. Sustainability (Switzerland), 13(8). https://doi.org/10.3390/su13084586 Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221–232. https://doi.org/10.1016/j.chb.2016.10.028 Wu, I. L., Chiu, M. L., & Chen, K. W. (2020). Defining the determinants of online impulse buying through a shopping process of integrating perceived risk, expectation-confirmation model, and flow theory issues. International Journal of Information Management, 52(May 2019), 102099. https://doi.org/10.1016/j.ijinfomgt.2020.102099 Zandy, M. (2015). The impact of income inequality on economic growth. MOODYS ANALYTICS, February, 59–100. https://doi.org/10.1787/9789264235120-5-en




DOI: https://doi.org/10.24176/bmaj.v6i2.11046

Article Metrics

Abstract views : 398| PDF views : 222

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Business Management Analysis Journal (BMAJ)

View My Stats

Member of: 

Indexed by:

gs      

  

Flag Counter

Business Management Analysis Journal (BMAJ) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Dedicated to: